{"title":"Temperature responsive behaviour of SrAl2O4(Eu, Dy):ZnGa2O4(Cr) phosphor-glass composite","authors":"Kiran, Y. Dwivedi","doi":"10.1016/j.materresbull.2024.113154","DOIUrl":null,"url":null,"abstract":"<div><div>The current investigation reports on laser spectroscopy and temperature-sensitive optical response of composite consisting of phosphors (ZnGa<sub>2</sub>O<sub>4</sub>:Cr<sup>3+</sup> and SrAl<sub>2</sub>O<sub>4</sub>:Eu<sup>2+</sup>, Dy<sup>3+</sup>) coated on a tellurite glass layer. Based on this composite, a temperature sensor, sensitve in the range of 298 K to 423 K, demonstrates a remarkable temperature sensitivity. Various analytical techniques, such as X-ray Diffraction, Scanning Electron Microscopy, High-Resolution Transmission Electron Microscopy, laser spectroscopy, etc., were employed to analyze the prepared composite. The investigation reveals the presence of ZGO and SrAl phosphors with crystalline sizes of approximately 36 nm and 25 nm, respectively, while the particle size ranges from 400 nm to 600 nm. A dip coating method was utilized to deposit tellurite-phosphor layers on the glass substrate to create a temperature sensor. SEM analysis indicates a layer thickness of around 93 µm. The existence of Eu<sup>2+</sup> and Cr<sup>3+</sup> ions was confirmed through photoexcitation and emission spectra on a 405 nm laser excitation. The temperature-dependent luminescence was studied using a ratiometric technique, showing a linear variation with temperature, resulting in an excellent temperature sensitivity of about 1.41 % <em>K</em><sup>−1</sup> at 298 K. Our preliminary study of the phosphor-tellurite composite suggests significant potential for extensive use in the field of dual-mode highly sensitive optical thermometry.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"182 ","pages":"Article 113154"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540824004847","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The current investigation reports on laser spectroscopy and temperature-sensitive optical response of composite consisting of phosphors (ZnGa2O4:Cr3+ and SrAl2O4:Eu2+, Dy3+) coated on a tellurite glass layer. Based on this composite, a temperature sensor, sensitve in the range of 298 K to 423 K, demonstrates a remarkable temperature sensitivity. Various analytical techniques, such as X-ray Diffraction, Scanning Electron Microscopy, High-Resolution Transmission Electron Microscopy, laser spectroscopy, etc., were employed to analyze the prepared composite. The investigation reveals the presence of ZGO and SrAl phosphors with crystalline sizes of approximately 36 nm and 25 nm, respectively, while the particle size ranges from 400 nm to 600 nm. A dip coating method was utilized to deposit tellurite-phosphor layers on the glass substrate to create a temperature sensor. SEM analysis indicates a layer thickness of around 93 µm. The existence of Eu2+ and Cr3+ ions was confirmed through photoexcitation and emission spectra on a 405 nm laser excitation. The temperature-dependent luminescence was studied using a ratiometric technique, showing a linear variation with temperature, resulting in an excellent temperature sensitivity of about 1.41 % K−1 at 298 K. Our preliminary study of the phosphor-tellurite composite suggests significant potential for extensive use in the field of dual-mode highly sensitive optical thermometry.
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.