Sara N. Veríssimo , Filipe Veloso , Francisco Neves , Jaime A. Ramos , Vitor H. Paiva , Ana C. Norte
{"title":"Plastic use as nesting material can alter incubation temperature and behaviour but does not affect yellow-legged gull chicks","authors":"Sara N. Veríssimo , Filipe Veloso , Francisco Neves , Jaime A. Ramos , Vitor H. Paiva , Ana C. Norte","doi":"10.1016/j.jtherbio.2024.104005","DOIUrl":null,"url":null,"abstract":"<div><div>Optimal incubation temperature is crucial for embryos' development and survival. With the increasing use of plastics in gulls' nests, it is essential to understand how their incorporation affects incubation temperature, parental behaviour, and hatching success. Considering this, we conducted an experiment where plastic was introduced into yellow-legged gulls (<em>Larus michahellis</em>) nests. The experiment comprised three groups: a control group, a group with low amount of plastic, and a third with a high amount of plastic. This design allowed us to investigate the effects of plastic on 1) the heart rate of incubating adults, 2) the number and duration of adults' absences from their nest, 3) how the presence or absence of the adult influenced egg temperature, and 4) chick hatching success, physiological parameters, and bill colour phenotype. We observed that incubation temperature was consistently higher in nests with plastic. The number of absences was higher in the low plastic group at increased temperatures, though the duration was significantly lower in both plastic groups than in the control, possibly to mitigate the effects of heat stress. During higher environmental temperatures, heart rate was higher for the high plastic group. The increase in heart rate in the low plastic group was less pronounced with increasing environmental temperatures. No significant effects were observed on hatching success or in the health condition of young chicks, except for high values of haemoglobin in both plastic groups, which might indicate dehydration.</div></div>","PeriodicalId":17428,"journal":{"name":"Journal of thermal biology","volume":"125 ","pages":"Article 104005"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of thermal biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306456524002237","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Optimal incubation temperature is crucial for embryos' development and survival. With the increasing use of plastics in gulls' nests, it is essential to understand how their incorporation affects incubation temperature, parental behaviour, and hatching success. Considering this, we conducted an experiment where plastic was introduced into yellow-legged gulls (Larus michahellis) nests. The experiment comprised three groups: a control group, a group with low amount of plastic, and a third with a high amount of plastic. This design allowed us to investigate the effects of plastic on 1) the heart rate of incubating adults, 2) the number and duration of adults' absences from their nest, 3) how the presence or absence of the adult influenced egg temperature, and 4) chick hatching success, physiological parameters, and bill colour phenotype. We observed that incubation temperature was consistently higher in nests with plastic. The number of absences was higher in the low plastic group at increased temperatures, though the duration was significantly lower in both plastic groups than in the control, possibly to mitigate the effects of heat stress. During higher environmental temperatures, heart rate was higher for the high plastic group. The increase in heart rate in the low plastic group was less pronounced with increasing environmental temperatures. No significant effects were observed on hatching success or in the health condition of young chicks, except for high values of haemoglobin in both plastic groups, which might indicate dehydration.
期刊介绍:
The Journal of Thermal Biology publishes articles that advance our knowledge on the ways and mechanisms through which temperature affects man and animals. This includes studies of their responses to these effects and on the ecological consequences. Directly relevant to this theme are:
• The mechanisms of thermal limitation, heat and cold injury, and the resistance of organisms to extremes of temperature
• The mechanisms involved in acclimation, acclimatization and evolutionary adaptation to temperature
• Mechanisms underlying the patterns of hibernation, torpor, dormancy, aestivation and diapause
• Effects of temperature on reproduction and development, growth, ageing and life-span
• Studies on modelling heat transfer between organisms and their environment
• The contributions of temperature to effects of climate change on animal species and man
• Studies of conservation biology and physiology related to temperature
• Behavioural and physiological regulation of body temperature including its pathophysiology and fever
• Medical applications of hypo- and hyperthermia
Article types:
• Original articles
• Review articles