An extensive study of the impact of graphene passivation on HTLs (PTAA and NiO) in MAPBI3 and Cs3Bi2I9-based inverted perovskite solar cells for thermal stability in SCAPS 1D framework

IF 6 2区 工程技术 Q2 ENERGY & FUELS Solar Energy Pub Date : 2024-10-30 DOI:10.1016/j.solener.2024.113043
Abdullahi Usman, Thiti Bovornratanaraks
{"title":"An extensive study of the impact of graphene passivation on HTLs (PTAA and NiO) in MAPBI3 and Cs3Bi2I9-based inverted perovskite solar cells for thermal stability in SCAPS 1D framework","authors":"Abdullahi Usman,&nbsp;Thiti Bovornratanaraks","doi":"10.1016/j.solener.2024.113043","DOIUrl":null,"url":null,"abstract":"<div><div>An investigation of the modification of transport layers of inverted perovskite solar cells has been extensively studied as an interface layer, using various techniques to minimize recombination and improve hole and electron extractions, which is critical as it affects the cell’s performance. This research is aimed to passivate in the HTL/absorber interface by inserting graphene as a hole extraction layer to minimize the phase transition changes caused by vanadium dioxide (VO<sub>2</sub>) interface from the experimental finding at low and high temperature resulting in unstable performance. The device is modeled and simulated using a solar cell capacitance simulator (SCAPS) based on the input parameters from the literature. The research objectives are to examine the impact of graphene in eight (8) configurations using two-hole transport layer (HTL) layers of poly[bis(4-phenyl) (2,4,6-trimethylphenyl) amine] (PTAA) and nickel oxide (NiO) in methylammonium lead iodide (MAPbI<sub>3</sub>) and cesium bismuth halide (Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>) devices from existing literature and a single bilayer electron transport layer (ETL) of PCBM/BCP. The device is further optimized where the impact of absorber thickness on recombination was explored, absorber doping densities, interface defects, operating temperatures, and series/shunt resistances within the ranges of 0.1––1 μm, 10<sup>11</sup>-10<sup>18</sup> cm<sup>−3</sup>, 10<sup>11</sup>-1020 cm<sup>−3</sup>, 25 °C- 85 °C, default (0)-10 Ω-cm<sup>2</sup>, and 500–5000 Ω-cm<sup>2</sup>, respectively. Devices with graphene passivation demonstrated thermal stability at 85 °C compared to those of 25 °C, with power conversion efficiency (PCE) improvements from 10.43 to 12.71 % and 10.07 to 16.30 % for PTAA and NiO in MAPbI<sub>3</sub>-based devices, respectively. For Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>-based devices, PCE values increased from 10.910 to 19.426 % and 7.21 to 13.930 % for the PTAA and NiO HTLs, respectively. These findings explore the potentials of graphene as the interface layer to replace VO<sub>2</sub> for charge carrier transport in an inverted p-i-n structures.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"284 ","pages":"Article 113043"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X24007382","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

An investigation of the modification of transport layers of inverted perovskite solar cells has been extensively studied as an interface layer, using various techniques to minimize recombination and improve hole and electron extractions, which is critical as it affects the cell’s performance. This research is aimed to passivate in the HTL/absorber interface by inserting graphene as a hole extraction layer to minimize the phase transition changes caused by vanadium dioxide (VO2) interface from the experimental finding at low and high temperature resulting in unstable performance. The device is modeled and simulated using a solar cell capacitance simulator (SCAPS) based on the input parameters from the literature. The research objectives are to examine the impact of graphene in eight (8) configurations using two-hole transport layer (HTL) layers of poly[bis(4-phenyl) (2,4,6-trimethylphenyl) amine] (PTAA) and nickel oxide (NiO) in methylammonium lead iodide (MAPbI3) and cesium bismuth halide (Cs3Bi2I9) devices from existing literature and a single bilayer electron transport layer (ETL) of PCBM/BCP. The device is further optimized where the impact of absorber thickness on recombination was explored, absorber doping densities, interface defects, operating temperatures, and series/shunt resistances within the ranges of 0.1––1 μm, 1011-1018 cm−3, 1011-1020 cm−3, 25 °C- 85 °C, default (0)-10 Ω-cm2, and 500–5000 Ω-cm2, respectively. Devices with graphene passivation demonstrated thermal stability at 85 °C compared to those of 25 °C, with power conversion efficiency (PCE) improvements from 10.43 to 12.71 % and 10.07 to 16.30 % for PTAA and NiO in MAPbI3-based devices, respectively. For Cs3Bi2I9-based devices, PCE values increased from 10.910 to 19.426 % and 7.21 to 13.930 % for the PTAA and NiO HTLs, respectively. These findings explore the potentials of graphene as the interface layer to replace VO2 for charge carrier transport in an inverted p-i-n structures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
广泛研究石墨烯钝化对基于 MAPBI3 和 Cs3Bi2I9 的倒置包光体太阳能电池中 HTL(PTAA 和 NiO)的影响,以提高 SCAPS 1D 框架的热稳定性
对倒置包晶体太阳能电池传输层改性的研究已作为界面层进行了广泛的研究,使用各种技术来最大限度地减少重组,改善空穴和电子萃取,这一点至关重要,因为它会影响电池的性能。本研究旨在通过插入石墨烯作为空穴萃取层,对 HTL/吸收器界面进行钝化处理,以最大限度地减少二氧化钒(VO2)界面在低温和高温下导致性能不稳定的相变。根据文献中的输入参数,使用太阳能电池电容模拟器(SCAPS)对该器件进行了建模和模拟。研究目标是检验石墨烯在八 (8) 种配置中的影响,这些配置使用了现有文献中的聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)和氧化镍(NiO)的双层空穴传输层(HTL),以及 PCBM/BCP 的单双层电子传输层(ETL)。对器件进行了进一步优化,分别在 0.1-1 μm、1011-1018 cm-3、1011-1020 cm-3、25 °C-85°C、默认 (0)-10 Ω-cm2 和 500-5000 Ω-cm2 的范围内探讨了吸收体厚度对重组的影响、吸收体掺杂密度、界面缺陷、工作温度以及串联/并联电阻。与 25 ℃ 的器件相比,石墨烯钝化器件在 85 ℃ 下具有热稳定性,基于 MAPbI3 器件的 PTAA 和 NiO 的功率转换效率(PCE)分别从 10.43% 和 10.07% 提高到 12.71% 和 16.30%。对于基于 Cs3Bi2I9 的器件,PTAA 和 NiO HTL 的 PCE 值分别从 10.910 % 增加到 19.426 % 和 7.21 % 增加到 13.930 %。这些发现探索了石墨烯作为界面层取代 VO2 在倒 pi-n 结构中进行电荷载流子传输的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
期刊最新文献
Corrigendum to “Experimental investigation of a photovoltaic solar air conditioning system and comparison with conventional unit in the context of the state of Piaui, Brazil” [Sol. Energy 272 (2024) 112492] Sustainable desalination through hybrid photovoltaic/thermal membrane distillation: Development of an off-grid prototype Exploring bamboo based bio-photovoltaic devices: Pioneering sustainable solar innovations- A comprehensive review Design and analysis of inorganic tandem architecture with synergistically optimized BaSnS3 top and AgTaS3 bottom perovskite Sub-Cells Designing and optimizing the lead-free double perovskite Cs2AgBiI6/Cs2AgBiBr6 bilayer perovskite solar cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1