Ruilong Li , Yao chen , Honglin Lian , Jianbing Guo , Xiaolang Chen , Junliang Li , Yongzhi Meng , Hong Wu
{"title":"Efficient flame retardancy of polypropylene by cobalt ions doped phytate melamine synergized with expandable graphite","authors":"Ruilong Li , Yao chen , Honglin Lian , Jianbing Guo , Xiaolang Chen , Junliang Li , Yongzhi Meng , Hong Wu","doi":"10.1016/j.polymdegradstab.2024.111054","DOIUrl":null,"url":null,"abstract":"<div><div>Maintaining a delicate balance between flame retardancy and amount of expandable graphite (EG) in flame retardant polypropylene (PP) is still a formidable challenge, primarily due to the lower flame-retardant efficiency of EG. In order to address this concern, a novel cobalt-doped nanosheet flame retardant (PAMA-Co) was fabricated by a hydrothermal method utilizing phytic acid (PA) and melamine (MA), exhibiting a promising potential in constructing synergistic EG flame retardant PP. Significantly, the incorporation of only 7 wt% PAMA-Co/23 wt% EG system raises the limiting oxygen index (LOI) of PP to 27.3% and UL-94 V0 level, which indicates the excellent synergistic flame-retardant efficiency of PAMA-Co. Furthermore, both the peak heat release rate (PHRR) and the peak smoke production rate (PSPR) of PP composites with 7 wt% PAMA-Co/23 wt% EG are substantially reduced, exhibiting an 81.6% lower PHRR and 87.8% PSPR compared to pure PP. The excellent flame-retardant efficiency is attributed to the following mechanisms: Gas-phase dilution, catalytic cross-linking charring effect, and the suppression of the EG “popcorn effect” of PAMA-Co. In summary, this work not only advances an understanding of flame-retardant mechanisms but also offers a practical, green strategy for enhancing the safety and utility of PP in various applications.</div></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"230 ","pages":"Article 111054"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391024003975","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Maintaining a delicate balance between flame retardancy and amount of expandable graphite (EG) in flame retardant polypropylene (PP) is still a formidable challenge, primarily due to the lower flame-retardant efficiency of EG. In order to address this concern, a novel cobalt-doped nanosheet flame retardant (PAMA-Co) was fabricated by a hydrothermal method utilizing phytic acid (PA) and melamine (MA), exhibiting a promising potential in constructing synergistic EG flame retardant PP. Significantly, the incorporation of only 7 wt% PAMA-Co/23 wt% EG system raises the limiting oxygen index (LOI) of PP to 27.3% and UL-94 V0 level, which indicates the excellent synergistic flame-retardant efficiency of PAMA-Co. Furthermore, both the peak heat release rate (PHRR) and the peak smoke production rate (PSPR) of PP composites with 7 wt% PAMA-Co/23 wt% EG are substantially reduced, exhibiting an 81.6% lower PHRR and 87.8% PSPR compared to pure PP. The excellent flame-retardant efficiency is attributed to the following mechanisms: Gas-phase dilution, catalytic cross-linking charring effect, and the suppression of the EG “popcorn effect” of PAMA-Co. In summary, this work not only advances an understanding of flame-retardant mechanisms but also offers a practical, green strategy for enhancing the safety and utility of PP in various applications.
期刊介绍:
Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology.
Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal.
However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.