Haoqing Ding , Bingwen Qian , Yutao Hu , Changli Wang , Xin Zhang , Ruqi Sun , Bin Xu
{"title":"A trimmed-NURBS-based thermal buckling isogeometric analysis framework for the variable stiffness plate with complex cutouts","authors":"Haoqing Ding , Bingwen Qian , Yutao Hu , Changli Wang , Xin Zhang , Ruqi Sun , Bin Xu","doi":"10.1016/j.advengsoft.2024.103803","DOIUrl":null,"url":null,"abstract":"<div><div>The isogeometric analysis of variable-stiffness structures with curvilinear fibers has gained considerable research attention. However, dealing with structures that have complex cutouts poses challenges for isogeometric analysis. Additionally, the thermal-elastic behavior of variable-stiffness structures must be carefully considered, as they often operate in thermal environments. This study introduces a novel trimmed non-uniform rational basis spline (NURBS) method to address these challenges and investigate the thermal buckling behavior of variable-stiffness plates. The method generates trimmed NURBS elements using a level-set function on the initial NURBS mesh to describe complex geometries. Segmented density interpolation formulas are proposed to capture the contributions of different NURBS elements and to prevent localized eigenmodes. An artificial shear correction factor is introduced to mitigate shear locking. Several numerical examples with various boundary conditions and fiber configurations, are presented to demonstrate the high accuracy and low computational costs of the proposed method.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"199 ","pages":"Article 103803"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965997824002102","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The isogeometric analysis of variable-stiffness structures with curvilinear fibers has gained considerable research attention. However, dealing with structures that have complex cutouts poses challenges for isogeometric analysis. Additionally, the thermal-elastic behavior of variable-stiffness structures must be carefully considered, as they often operate in thermal environments. This study introduces a novel trimmed non-uniform rational basis spline (NURBS) method to address these challenges and investigate the thermal buckling behavior of variable-stiffness plates. The method generates trimmed NURBS elements using a level-set function on the initial NURBS mesh to describe complex geometries. Segmented density interpolation formulas are proposed to capture the contributions of different NURBS elements and to prevent localized eigenmodes. An artificial shear correction factor is introduced to mitigate shear locking. Several numerical examples with various boundary conditions and fiber configurations, are presented to demonstrate the high accuracy and low computational costs of the proposed method.
期刊介绍:
The objective of this journal is to communicate recent and projected advances in computer-based engineering techniques. The fields covered include mechanical, aerospace, civil and environmental engineering, with an emphasis on research and development leading to practical problem-solving.
The scope of the journal includes:
• Innovative computational strategies and numerical algorithms for large-scale engineering problems
• Analysis and simulation techniques and systems
• Model and mesh generation
• Control of the accuracy, stability and efficiency of computational process
• Exploitation of new computing environments (eg distributed hetergeneous and collaborative computing)
• Advanced visualization techniques, virtual environments and prototyping
• Applications of AI, knowledge-based systems, computational intelligence, including fuzzy logic, neural networks and evolutionary computations
• Application of object-oriented technology to engineering problems
• Intelligent human computer interfaces
• Design automation, multidisciplinary design and optimization
• CAD, CAE and integrated process and product development systems
• Quality and reliability.