{"title":"Microstructural evolution and cyclic oxidation behavior of HVOF-sprayed NiCrSi and NiCrC coatings on T11 steel","authors":"Subbarao Medabalimi , Ajit M. Hebbale , Richa Singh , Vijay Desai , M.R. Ramesh","doi":"10.1016/j.matchar.2024.114495","DOIUrl":null,"url":null,"abstract":"<div><div>This study analyzes NiCrSi and NiCrC coatings developed on low alloy ferritic stainless steel (grade T11) through the HVOF spraying technique. The coatings were characterized by their phase constitution, microstructure, cyclic oxidation behavior, and hardness. X-ray diffraction (XRD) analysis confirmed the presence of the NiCr solid solution matrix as the primary phase in both coatings. Moreover, the microstructure of the NiCrSi coating included the hard intermetallic compounds like Cr₃Si and Ni₃Si and the NiCrC coating contained the hard phases like Cr₃C₂ and Ni₃C which improved the hardness and the wear resistance of the coatings. Microhardness measurements revealed that the coatings had an average hardness of 300 ± 50 HV, significantly greater than the substrate hardness of 225 ± 25 HV. Cyclic oxidation tests were carried out at 700 °C revealed that both the coatings showed a lower weight gain than the uncoated substrate, suggesting enhanced oxidation resistance. This was because the protective oxide layers like Cr₂O₃ and SiO₂ in the NiCrSi coating and Cr₂O₃ and NiO in the NiCrC coating were formed. X-ray analysis establish ed. the presence of these oxides, which inhibited oxygen penetration through the coatings and provided additional protection against oxidation. Therefore, the study revealed that both NiCrSi and NiCrC coatings have good mechanical and oxidation resistance properties, which make them suitable for high-temperature applications where there is a need for improved durability, wear resistance, and protection against oxidation.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114495"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324008763","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
This study analyzes NiCrSi and NiCrC coatings developed on low alloy ferritic stainless steel (grade T11) through the HVOF spraying technique. The coatings were characterized by their phase constitution, microstructure, cyclic oxidation behavior, and hardness. X-ray diffraction (XRD) analysis confirmed the presence of the NiCr solid solution matrix as the primary phase in both coatings. Moreover, the microstructure of the NiCrSi coating included the hard intermetallic compounds like Cr₃Si and Ni₃Si and the NiCrC coating contained the hard phases like Cr₃C₂ and Ni₃C which improved the hardness and the wear resistance of the coatings. Microhardness measurements revealed that the coatings had an average hardness of 300 ± 50 HV, significantly greater than the substrate hardness of 225 ± 25 HV. Cyclic oxidation tests were carried out at 700 °C revealed that both the coatings showed a lower weight gain than the uncoated substrate, suggesting enhanced oxidation resistance. This was because the protective oxide layers like Cr₂O₃ and SiO₂ in the NiCrSi coating and Cr₂O₃ and NiO in the NiCrC coating were formed. X-ray analysis establish ed. the presence of these oxides, which inhibited oxygen penetration through the coatings and provided additional protection against oxidation. Therefore, the study revealed that both NiCrSi and NiCrC coatings have good mechanical and oxidation resistance properties, which make them suitable for high-temperature applications where there is a need for improved durability, wear resistance, and protection against oxidation.
期刊介绍:
Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials.
The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal.
The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include:
Metals & Alloys
Ceramics
Nanomaterials
Biomedical materials
Optical materials
Composites
Natural Materials.