Efficient and easy-to-recover immobilized heterogeneous catalyst CuSF/ZIF-67 activates peroxymonosulfate to remove refractory antibiotics

IF 6.9 2区 环境科学与生态学 Q1 ENGINEERING, CHEMICAL Process Safety and Environmental Protection Pub Date : 2024-10-28 DOI:10.1016/j.psep.2024.10.098
Xueying Yang , Xiangdong Zhang , Jiaqi Wang , Jian Zhang , Haina Bai
{"title":"Efficient and easy-to-recover immobilized heterogeneous catalyst CuSF/ZIF-67 activates peroxymonosulfate to remove refractory antibiotics","authors":"Xueying Yang ,&nbsp;Xiangdong Zhang ,&nbsp;Jiaqi Wang ,&nbsp;Jian Zhang ,&nbsp;Haina Bai","doi":"10.1016/j.psep.2024.10.098","DOIUrl":null,"url":null,"abstract":"<div><div>Aiming at the challenge of catalyst recovery and reuse from aqueous solution, in this study, a novel immobilized heterogeneous catalyst, CuSF/ZIF-67, was innovatively designed and prepared, and PMS was activated by the synergistic effect of Cu, Co and low-valent sulfur species. The catalyst can degrade 98.01 % OTC (20 mg/L) within 20 minutes. Its high efficiency is mainly attributed to the promotion of Co<sup>2+</sup> regeneration by low-valent sulfur species (S<sup>2-</sup>/S<sub>2</sub><sup>2-</sup>) and Cu<sup>+</sup>. In addition, the catalyst showed strong oxidation ability, and through the synergistic effect of free radicals (SO<sub>4</sub><sup>•-</sup>, •OH, •O<sub>2</sub><sup>-</sup>) and non-free radicals (<sup>1</sup>O<sub>2</sub>), it realized the efficient removal of various antibiotics and dyes. Additionally, after 10 cycles, its degradation efficiency only decreased by 5.12 %, which proved its good reusability. The intermediate was characterized in detail through LC-MS technology. The biological toxicity of the degradation intermediate was assessed both theoretically and experimentally, relying on the QSAR model and toxicology experiment. Ultimately, we designed and fabricated a catalytic reactor to validate the performance of the catalyst in the actual wastewater remediation process. The experimental results show that the solid catalyst shows great potential in practical application. This study not only offers a novel concept for the design of efficient and recyclable catalysts, but also furnishes robust technical support for the actual wastewater remediation.</div></div>","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":"192 ","pages":"Pages 769-781"},"PeriodicalIF":6.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957582024013867","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the challenge of catalyst recovery and reuse from aqueous solution, in this study, a novel immobilized heterogeneous catalyst, CuSF/ZIF-67, was innovatively designed and prepared, and PMS was activated by the synergistic effect of Cu, Co and low-valent sulfur species. The catalyst can degrade 98.01 % OTC (20 mg/L) within 20 minutes. Its high efficiency is mainly attributed to the promotion of Co2+ regeneration by low-valent sulfur species (S2-/S22-) and Cu+. In addition, the catalyst showed strong oxidation ability, and through the synergistic effect of free radicals (SO4•-, •OH, •O2-) and non-free radicals (1O2), it realized the efficient removal of various antibiotics and dyes. Additionally, after 10 cycles, its degradation efficiency only decreased by 5.12 %, which proved its good reusability. The intermediate was characterized in detail through LC-MS technology. The biological toxicity of the degradation intermediate was assessed both theoretically and experimentally, relying on the QSAR model and toxicology experiment. Ultimately, we designed and fabricated a catalytic reactor to validate the performance of the catalyst in the actual wastewater remediation process. The experimental results show that the solid catalyst shows great potential in practical application. This study not only offers a novel concept for the design of efficient and recyclable catalysts, but also furnishes robust technical support for the actual wastewater remediation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效且易于回收的固定化异相催化剂 CuSF/ZIF-67 活化过一硫酸盐以去除难溶性抗生素
针对催化剂从水溶液中回收和再利用的难题,本研究创新性地设计和制备了一种新型固定化异相催化剂 CuSF/ZIF-67,并通过 Cu、Co 和低价硫物种的协同作用激活了 PMS。该催化剂可在 20 分钟内降解 98.01% 的 OTC(20 mg/L)。催化剂的高效率主要归功于低价硫(S2-/S22-)和 Cu+ 对 Co2+ 再生的促进作用。此外,催化剂还具有很强的氧化能力,通过自由基(SO4--、-OH、-O2-)和非自由基(1O2)的协同作用,实现了对各种抗生素和染料的高效去除。此外,经过 10 次循环后,其降解效率仅下降了 5.12%,这证明了其良好的可再利用性。通过 LC-MS 技术对该中间体进行了详细表征。通过 QSAR 模型和毒理学实验,对降解中间体的生物毒性进行了理论和实验评估。最后,我们设计并制造了一个催化反应器,以验证催化剂在实际废水修复过程中的性能。实验结果表明,固体催化剂在实际应用中显示出巨大的潜力。这项研究不仅为高效、可回收催化剂的设计提供了新的理念,而且为实际废水修复提供了有力的技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Process Safety and Environmental Protection
Process Safety and Environmental Protection 环境科学-工程:化工
CiteScore
11.40
自引率
15.40%
发文量
929
审稿时长
8.0 months
期刊介绍: The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice. PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers. PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.
期刊最新文献
A benchmark of industrial polymerization process for thermal runaway process monitoring Influence of oxygen carrier on NOx and N2O emissions in biomass combustion within fluidized beds Decontamination of fish aquarium wastewater by ozonation catalyzed by multi-metal loaded activated carbons for sustainable aquaculture Effect of concentration gradients on the explosion characteristics of methane/air premixed gases Inhibitory performance and mechanism analysis of modified fly-ash inhibitor on the coal spontaneous combustion: A combined study of laboratory experiments and molecular dynamic simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1