Hydroconversion of waste polyethylene plastics under mild conditions using mechanically mixed bifunctional catalysts: Impact of metal-acid balance and proximity
{"title":"Hydroconversion of waste polyethylene plastics under mild conditions using mechanically mixed bifunctional catalysts: Impact of metal-acid balance and proximity","authors":"Wenbo Zhang , Leilei Cheng , Weiqiang Zhu , Jing Gu , Shaonan Tian , Haoran Yuan , Yong Chen","doi":"10.1016/j.psep.2024.10.089","DOIUrl":null,"url":null,"abstract":"<div><div>The disposal of non-biodegradable waste polyolefin plastics poses a serious environmental threat, highlighting the need for cleaner and more efficient thermochemical recycling technologies. This study introduces a scalable mechanical method to synthesize a metal-acid bifunctional catalyst. The mechanical ball milling process not only exposes more acidic sites but also enhances metal-acid proximity without blocking the pores. By varying the metal-acid balance (MAB) through different mixing ratios, we achieved higher yields and selectivity for soluble products at the optimal MAB level. Under mild conditions (250°C) for 8 h, polyethylene (PE) is efficiently converted into liquid phase iso-paraffins with an isomer selectivity of up to 56 % in the diesel and aviation kerosene fractions (C<sub>11</sub>-C<sub>18</sub>). This research underscores the importance of the accessibility of acidic sites to long-chain macromolecules, metal-acid site distance, and their balance in the hydrocracking of PE. It provides valuable theoretical insights and catalytic strategies for converting waste PE plastics into high-value fuel fractions.</div></div>","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":"192 ","pages":"Pages 782-792"},"PeriodicalIF":6.9000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957582024013776","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The disposal of non-biodegradable waste polyolefin plastics poses a serious environmental threat, highlighting the need for cleaner and more efficient thermochemical recycling technologies. This study introduces a scalable mechanical method to synthesize a metal-acid bifunctional catalyst. The mechanical ball milling process not only exposes more acidic sites but also enhances metal-acid proximity without blocking the pores. By varying the metal-acid balance (MAB) through different mixing ratios, we achieved higher yields and selectivity for soluble products at the optimal MAB level. Under mild conditions (250°C) for 8 h, polyethylene (PE) is efficiently converted into liquid phase iso-paraffins with an isomer selectivity of up to 56 % in the diesel and aviation kerosene fractions (C11-C18). This research underscores the importance of the accessibility of acidic sites to long-chain macromolecules, metal-acid site distance, and their balance in the hydrocracking of PE. It provides valuable theoretical insights and catalytic strategies for converting waste PE plastics into high-value fuel fractions.
期刊介绍:
The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice.
PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers.
PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.