Effect of heat treatment on wear resistance of cold-sprayed Ti-diamond composite coating

IF 4.2 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Refractory Metals & Hard Materials Pub Date : 2024-10-19 DOI:10.1016/j.ijrmhm.2024.106924
{"title":"Effect of heat treatment on wear resistance of cold-sprayed Ti-diamond composite coating","authors":"","doi":"10.1016/j.ijrmhm.2024.106924","DOIUrl":null,"url":null,"abstract":"<div><div>In order to enhance the wear resistance of cold-sprayed Ti coatings, Ti-diamond (Ti-MD) composite coatings were fabricated, followed by heat treatment at different temperatures. The effects of heat treatment temperature on the wear resistance of the composite coatings were assessed using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), microhardness testing, and wear resistance experiments. The results show that the composite coating undergo no phase transformation after heat treatment, and exhibits higher microhardness and improved wear resistance. The porosity results showed that the porosity of the coating decreased as the heat treatment temperature increases. TEM results showed that stable TiC (about 10 nm) was formed at the interface between the titanium and diamond particles after heat treatment at 800 °C, and nanoindentation results showed that the heat-treated coating had higher deformation resistance. Specifically, when the heat-treated temperature rose to 800 °C, the composite coating exhibits an 80 % reduction in wear rate, primarily attributable to the decreased porosity of the coating and the enhanced adhesion between Ti and diamond particles. The wear mechanisms of the heat-treated coatings are predominantly reduced oxidative and abrasive wear.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026343682400372X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In order to enhance the wear resistance of cold-sprayed Ti coatings, Ti-diamond (Ti-MD) composite coatings were fabricated, followed by heat treatment at different temperatures. The effects of heat treatment temperature on the wear resistance of the composite coatings were assessed using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), microhardness testing, and wear resistance experiments. The results show that the composite coating undergo no phase transformation after heat treatment, and exhibits higher microhardness and improved wear resistance. The porosity results showed that the porosity of the coating decreased as the heat treatment temperature increases. TEM results showed that stable TiC (about 10 nm) was formed at the interface between the titanium and diamond particles after heat treatment at 800 °C, and nanoindentation results showed that the heat-treated coating had higher deformation resistance. Specifically, when the heat-treated temperature rose to 800 °C, the composite coating exhibits an 80 % reduction in wear rate, primarily attributable to the decreased porosity of the coating and the enhanced adhesion between Ti and diamond particles. The wear mechanisms of the heat-treated coatings are predominantly reduced oxidative and abrasive wear.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热处理对冷喷钛金刚石复合涂层耐磨性的影响
为了提高冷喷涂钛涂层的耐磨性,制作了钛-金刚石(Ti-MD)复合涂层,然后在不同温度下进行热处理。采用 X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、透射电子显微镜 (TEM)、显微硬度测试和耐磨性实验评估了热处理温度对复合涂层耐磨性的影响。结果表明,复合涂层在热处理后没有发生相变,并表现出更高的显微硬度和更好的耐磨性。孔隙率结果表明,涂层的孔隙率随着热处理温度的升高而降低。TEM 结果表明,在 800 °C 热处理后,钛和金刚石颗粒之间的界面上形成了稳定的 TiC(约 10 nm),纳米压痕结果表明,热处理后的涂层具有更高的抗变形能力。具体而言,当热处理温度升至 800 ℃ 时,复合涂层的磨损率降低了 80%,这主要归功于涂层孔隙率的降低以及钛和金刚石颗粒之间附着力的增强。热处理涂层的磨损机制主要是减少氧化磨损和磨料磨损。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.00
自引率
13.90%
发文量
236
审稿时长
35 days
期刊介绍: The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.
期刊最新文献
An insight into the microstructure effects on removal mechanisms of cemented carbide WC-Co via molecular dynamics simulations Editorial Board Bonding behavior of Ti-6Al-3Nb-2Zr-1Mo/WC composite coating on titanium alloy by gas tungsten arc welding cladding The microstructure evolution and mechanical properties of WC-cu-10Ni-5Mn-3Sn cemented carbides containing NbC prepared by pressureless melt infiltration Cyclic warm rolling: A path to superior properties in MoCu composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1