Khursheed Ahmad, Mohd Quasim Khan, Rais Ahmad Khan, Iti Dhakad
{"title":"Fabrication of tartrazine sensor using zinc oxide/graphitic carbon nitride modified glassy carbon electrode","authors":"Khursheed Ahmad, Mohd Quasim Khan, Rais Ahmad Khan, Iti Dhakad","doi":"10.1007/s10854-024-13725-8","DOIUrl":null,"url":null,"abstract":"<div><p>Tartrazine (Tz) is well-known synthetic dye and widely used in food industry. Despite its potential applications, Tz has some negative impacts on human beings due to the presence of toxicity and pathogenicity. Thus, it becomes essential to determine and keep an eye on the precise quantification of Tz. Electrochemical method-based sensors have received enormous attention because of their fast processing and response. In this work, we have synthesized ZnO rods under a simple synthesis approach. Graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) was synthesized using melamine precursor whereas the composite of ZnO@g-C<sub>3</sub>N<sub>4</sub> was obtained by a simple room temperature stirring of ZnO and g-C<sub>3</sub>N<sub>4</sub>. The as fabricated ZnO, g-C<sub>3</sub>N<sub>4</sub>, and composite of ZnO@g-C<sub>3</sub>N<sub>4</sub> were carefully identified by various sophisticated instrumentation techniques viz., powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. These synthesized g-C<sub>3</sub>N<sub>4</sub>, ZnO, and ZnO@g-C<sub>3</sub>N<sub>4</sub> composite have been used for the modification of glassy carbon electrode (GCE) and designated as MGE-2, MGE-3, and MGE-4, respectively, whereas bare GC electrode has been designated as MGE-1. For evaluating the electrochemical sensing performance of the modified electrodes MGE-2, MGE-3, and MGE-4, differential pulse voltammetry (DPV) method has been used. The MGE-4 exhibited the reasonably good detection limit of 0.03 µM and sensitivity of 1.57 µA µM<sup>−1</sup> cm<sup>−2</sup>.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-024-13725-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Tartrazine (Tz) is well-known synthetic dye and widely used in food industry. Despite its potential applications, Tz has some negative impacts on human beings due to the presence of toxicity and pathogenicity. Thus, it becomes essential to determine and keep an eye on the precise quantification of Tz. Electrochemical method-based sensors have received enormous attention because of their fast processing and response. In this work, we have synthesized ZnO rods under a simple synthesis approach. Graphitic carbon nitride (g-C3N4) was synthesized using melamine precursor whereas the composite of ZnO@g-C3N4 was obtained by a simple room temperature stirring of ZnO and g-C3N4. The as fabricated ZnO, g-C3N4, and composite of ZnO@g-C3N4 were carefully identified by various sophisticated instrumentation techniques viz., powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. These synthesized g-C3N4, ZnO, and ZnO@g-C3N4 composite have been used for the modification of glassy carbon electrode (GCE) and designated as MGE-2, MGE-3, and MGE-4, respectively, whereas bare GC electrode has been designated as MGE-1. For evaluating the electrochemical sensing performance of the modified electrodes MGE-2, MGE-3, and MGE-4, differential pulse voltammetry (DPV) method has been used. The MGE-4 exhibited the reasonably good detection limit of 0.03 µM and sensitivity of 1.57 µA µM−1 cm−2.
期刊介绍:
The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.