{"title":"A self-regenerative heat pump based on a dual-functional relaxor ferroelectric polymer","authors":"Hanxiang Wu, Yuan Zhu, Wenzhong Yan, Siyu Zhang, William Budiman, Kede Liu, Jianghan Wu, Yuan Meng, Xun Zhao, Ankur Mehta, Sumanjeet Kaur, Qibing Pei","doi":"10.1126/science.adr2268","DOIUrl":null,"url":null,"abstract":"<div >Electrocaloric (EC) cooling presents a promising approach to efficient and compact solid-state heat pumps. However, reported EC coolers have complex architectures and limited cooling temperature lift. In this work, we introduce a self-regenerative heat pump (SRHP) using a cascade of EC polymer film stacks, which have electrostrictive actuations in response to an electric field that are directed to realize efficient heat transfer, eliminating the need for additional transportive or regenerative mechanisms. The SRHP demonstrates a cooling of 8.8 kelvin below ambient temperature in 30 seconds and delivers a maximum specific cooling power of 1.52 watts per gram. The temperature lift of the SRHP is 14.2 kelvin. These results underscore the potential of the compact solid-state cooling mechanism to address the increasing need for localized thermal management.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":null,"pages":null},"PeriodicalIF":44.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adr2268","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Electrocaloric (EC) cooling presents a promising approach to efficient and compact solid-state heat pumps. However, reported EC coolers have complex architectures and limited cooling temperature lift. In this work, we introduce a self-regenerative heat pump (SRHP) using a cascade of EC polymer film stacks, which have electrostrictive actuations in response to an electric field that are directed to realize efficient heat transfer, eliminating the need for additional transportive or regenerative mechanisms. The SRHP demonstrates a cooling of 8.8 kelvin below ambient temperature in 30 seconds and delivers a maximum specific cooling power of 1.52 watts per gram. The temperature lift of the SRHP is 14.2 kelvin. These results underscore the potential of the compact solid-state cooling mechanism to address the increasing need for localized thermal management.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.