{"title":"Analysis of the response to high temperature stress in hybrid grouper (Epinephelus fuscoguttatus♀×E. lanceolatus♂)","authors":"Yan Hu, Yafeng Tan, Junchi Liu, Haizhan Tang, Kaiwang Wang, Feng Tang, Jian Luo, Xin Wen","doi":"10.3389/fmars.2024.1466656","DOIUrl":null,"url":null,"abstract":"Hybrid grouper (<jats:italic>Epinephelus fuscoguttatus♀</jats:italic> × <jats:italic>Epinephelus lanceolatus</jats:italic>♂) are an essential species in marine aquaculture. However, they are susceptible to high temperatures, which can reduce disease resistance, slow growth rates, and decrease production efficiency, resulting in significant economic losses. This study aims to investigate the differences in heat tolerance between hybrid grouper and their parental species, tiger grouper (<jats:italic>Epinephelus fuscoguttatus</jats:italic>) and giant grouper (<jats:italic>E. lanceolatus</jats:italic>), and to identify heat stress-related signaling pathways and key genes. Through controlled temperature experiments, we measured the physiological and biochemical parameters of serum (ACP, AKP, TG, COR) and liver (HSP70, HSP90, SOD, CAT) in pearl gentian grouper and their parents, followed by liver transcriptome analysis of the three grouper species. The results showed that the lethal temperature of tiger grouper is 41°C, and the lethal temperature of hybrid tiger grouper and saddle grouper is 40°C. Significant changes in antioxidant and heat stress-related indicators were observed in the early stages of stress. Comparative analysis of DEGs related to heat tolerance between pearl gentian grouper and their parents revealed common DEGs including the <jats:italic>hsp</jats:italic> family, <jats:italic>danaj</jats:italic> family, <jats:italic>slc</jats:italic> family, <jats:italic>pnpla2</jats:italic>, <jats:italic>magot</jats:italic>, <jats:italic>actalb</jats:italic>, and <jats:italic>prodh</jats:italic>. Among these, the gene expression trends in hybrids were similar to those of their maternal parent and varied between the same or opposite trends compared to those of their paternal parent. These findings suggest that the hybrids inherit heat regulation genes from both parents, with a higher proportion from the maternal parent, which likely explains their intermediate heat tolerance. This research provides insights into the potential relationship between heat tolerance in pearl gentian grouper and their parents and identifies key genetic information affecting heat tolerance.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"59 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2024.1466656","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hybrid grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂) are an essential species in marine aquaculture. However, they are susceptible to high temperatures, which can reduce disease resistance, slow growth rates, and decrease production efficiency, resulting in significant economic losses. This study aims to investigate the differences in heat tolerance between hybrid grouper and their parental species, tiger grouper (Epinephelus fuscoguttatus) and giant grouper (E. lanceolatus), and to identify heat stress-related signaling pathways and key genes. Through controlled temperature experiments, we measured the physiological and biochemical parameters of serum (ACP, AKP, TG, COR) and liver (HSP70, HSP90, SOD, CAT) in pearl gentian grouper and their parents, followed by liver transcriptome analysis of the three grouper species. The results showed that the lethal temperature of tiger grouper is 41°C, and the lethal temperature of hybrid tiger grouper and saddle grouper is 40°C. Significant changes in antioxidant and heat stress-related indicators were observed in the early stages of stress. Comparative analysis of DEGs related to heat tolerance between pearl gentian grouper and their parents revealed common DEGs including the hsp family, danaj family, slc family, pnpla2, magot, actalb, and prodh. Among these, the gene expression trends in hybrids were similar to those of their maternal parent and varied between the same or opposite trends compared to those of their paternal parent. These findings suggest that the hybrids inherit heat regulation genes from both parents, with a higher proportion from the maternal parent, which likely explains their intermediate heat tolerance. This research provides insights into the potential relationship between heat tolerance in pearl gentian grouper and their parents and identifies key genetic information affecting heat tolerance.
期刊介绍:
Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide.
With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.