Xylem and Phloem in Petioles Are Coordinated With Leaf Gas Exchange in Oaks With Contrasting Anatomical Strategies Depending on Leaf Habit.

IF 6 1区 生物学 Q1 PLANT SCIENCES Plant, Cell & Environment Pub Date : 2024-11-01 DOI:10.1111/pce.15231
Rubén Martín-Sánchez, Domingo Sancho-Knapik, Juan Pedro Ferrio, David Alonso-Forn, Juan Manuel Losada, José Javier Peguero-Pina, Maurizio Mencuccini, Eustaquio Gil-Pelegrín
{"title":"Xylem and Phloem in Petioles Are Coordinated With Leaf Gas Exchange in Oaks With Contrasting Anatomical Strategies Depending on Leaf Habit.","authors":"Rubén Martín-Sánchez, Domingo Sancho-Knapik, Juan Pedro Ferrio, David Alonso-Forn, Juan Manuel Losada, José Javier Peguero-Pina, Maurizio Mencuccini, Eustaquio Gil-Pelegrín","doi":"10.1111/pce.15231","DOIUrl":null,"url":null,"abstract":"<p><p>As the single link between leaves and the rest of the plant, petioles must develop conductive tissues according to the water influx and sugar outflow of the leaf lamina. A scaling relationship between leaf area and anatomical traits of xylem and phloem is expected to improve the efficiency of these tissues. However, the different constraints compromising the functionality of both tissues (e.g., risk of cavitation) must not be disregarded. Additionally, deciduous and evergreen plants may have different strategies to produce and package their petiole conduits to cope with environmental restrictions. We explored in 33 oak species the relationships between petiole anatomical traits, leaf area, stomatal conductance, and photosynthesis rate. Results showed allometric scaling between anatomical structure of xylem and phloem with leaf area. We also found correlations between photosynthesis rate, stomatal conductance, and anatomical traits in the petiole. The main novelty is how oaks present a different strategy depending on the leaf habit. Deciduous species tend to increase their diameters to achieve greater leaf-specific conductivity. By contrast, evergreen oaks develop larger xylem conductive areas for a given leaf area than deciduous ones. This trade-off between safety-efficiency in petioles has never been attributed to the leaf habit of the species.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15231","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

As the single link between leaves and the rest of the plant, petioles must develop conductive tissues according to the water influx and sugar outflow of the leaf lamina. A scaling relationship between leaf area and anatomical traits of xylem and phloem is expected to improve the efficiency of these tissues. However, the different constraints compromising the functionality of both tissues (e.g., risk of cavitation) must not be disregarded. Additionally, deciduous and evergreen plants may have different strategies to produce and package their petiole conduits to cope with environmental restrictions. We explored in 33 oak species the relationships between petiole anatomical traits, leaf area, stomatal conductance, and photosynthesis rate. Results showed allometric scaling between anatomical structure of xylem and phloem with leaf area. We also found correlations between photosynthesis rate, stomatal conductance, and anatomical traits in the petiole. The main novelty is how oaks present a different strategy depending on the leaf habit. Deciduous species tend to increase their diameters to achieve greater leaf-specific conductivity. By contrast, evergreen oaks develop larger xylem conductive areas for a given leaf area than deciduous ones. This trade-off between safety-efficiency in petioles has never been attributed to the leaf habit of the species.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
橡树叶柄中的木质部和叶肉与叶片的气体交换相互协调,其解剖学策略因叶片习性而异。
叶柄作为连接叶片和植物其他部分的唯一纽带,必须根据叶片的水分流入和糖分流出来发展传导组织。叶面积与木质部和韧皮部解剖特征之间的比例关系有望提高这些组织的效率。不过,也不能忽视影响这两种组织功能的不同制约因素(如空化风险)。此外,落叶植物和常绿植物可能有不同的策略来生产和包装叶柄导管,以应对环境限制。我们研究了 33 种橡树叶柄解剖特征、叶面积、气孔导度和光合作用率之间的关系。结果显示,木质部和韧皮部的解剖结构与叶面积之间存在异速比例关系。我们还发现光合作用率、气孔导度和叶柄解剖特征之间存在相关性。主要的新颖之处在于橡树如何根据叶片习性采取不同的策略。落叶树种倾向于增加叶片直径,以获得更大的叶片传导性。相比之下,常绿橡树在给定叶片面积的情况下,木质部传导面积要比落叶橡树大。叶柄安全与效率之间的这种权衡从未归因于物种的叶片习性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
期刊最新文献
Biosynthesis-Based Spatial Metabolome of Condensed Tannin Reveals Its Role in Salt Tolerance of Non-Salt-Secretor Mangrove Kandelia obovata. A Detailed Proteomics and Metabolomics Landscape Sheds Light on the Mechanistic Insights Into the Resistance Response of Transgenic Pigeon Pea Against Wilt Stress. Issue Information Leaf Photosynthetic and Photoprotective Acclimation in the Ultraviolet-A1 and Blue Light Regions Follow a Continuous, Shallow Gradient. Warming and UV Radiation Alleviate the Effect of Virus Infection on the Microalga Emiliania huxleyi.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1