Zhangji Dong , Qing Wang , Yingying Yan , Liang Oscar Qiang , Mei Liu
{"title":"Evolution and functional divergence of the Fidgetin family","authors":"Zhangji Dong , Qing Wang , Yingying Yan , Liang Oscar Qiang , Mei Liu","doi":"10.1016/j.bbamcr.2024.119870","DOIUrl":null,"url":null,"abstract":"<div><div>The Fidgetin (FIGN) family, which comprises FIGN, Fidgetin-like 1 (FIGNL1), and Fidgetin-like 2 (FIGNL2), is a vital group of microtubule-severing proteins. These proteins feature a conserved AAA+ domain essential for ATPase activity and a hexameric assembly. This review provides an in-depth analysis of the evolution and functional divergence of the FIGN family members, highlighting their role in the dynamic organization of the cytoskeleton. We further explore their broader biological functions across various species, systems, and subcellular localization. Although the FIGN family is conserved, each member exhibits unique structural characteristics and functions that reflect their evolutionary adaptations. FIGNL1 is found across animal species, while FIGNL2 is specific to vertebrates, thereby indicating its more recent evolutionary origin. Moreover, synteny analysis has revealed that FIGN is located in a more conserved genomic region compared to FIGNL2, which has undergone substantial evolutionary changes. The expression patterns of the FIGN members also vary across organisms and tissues. For example, FIGNL2 shows a notably reduced expression in the mammalian nervous system compared to that in lower vertebrates. The FIGN family members have distinct roles in microtubule severing, cell division, and DNA repair. Specifically, FIGN is involved in cell division and neuronal regeneration, FIGNL1 in axonal growth and DNA repair, and FIGNL2 in cell migration and vascular development. Their involvement in these processes underscores their role as potential biomarkers for certain cancers as well as therapeutic targets for diseases affecting the nervous system and cardiovascular development. All these evolutionary insights and functional distinctions of the FIGN family offer a comprehensive framework for understanding cytoskeletal regulation and its implications in health and disease.</div></div>","PeriodicalId":8754,"journal":{"name":"Biochimica et biophysica acta. Molecular cell research","volume":"1872 1","pages":"Article 119870"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular cell research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167488924002131","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Fidgetin (FIGN) family, which comprises FIGN, Fidgetin-like 1 (FIGNL1), and Fidgetin-like 2 (FIGNL2), is a vital group of microtubule-severing proteins. These proteins feature a conserved AAA+ domain essential for ATPase activity and a hexameric assembly. This review provides an in-depth analysis of the evolution and functional divergence of the FIGN family members, highlighting their role in the dynamic organization of the cytoskeleton. We further explore their broader biological functions across various species, systems, and subcellular localization. Although the FIGN family is conserved, each member exhibits unique structural characteristics and functions that reflect their evolutionary adaptations. FIGNL1 is found across animal species, while FIGNL2 is specific to vertebrates, thereby indicating its more recent evolutionary origin. Moreover, synteny analysis has revealed that FIGN is located in a more conserved genomic region compared to FIGNL2, which has undergone substantial evolutionary changes. The expression patterns of the FIGN members also vary across organisms and tissues. For example, FIGNL2 shows a notably reduced expression in the mammalian nervous system compared to that in lower vertebrates. The FIGN family members have distinct roles in microtubule severing, cell division, and DNA repair. Specifically, FIGN is involved in cell division and neuronal regeneration, FIGNL1 in axonal growth and DNA repair, and FIGNL2 in cell migration and vascular development. Their involvement in these processes underscores their role as potential biomarkers for certain cancers as well as therapeutic targets for diseases affecting the nervous system and cardiovascular development. All these evolutionary insights and functional distinctions of the FIGN family offer a comprehensive framework for understanding cytoskeletal regulation and its implications in health and disease.
期刊介绍:
BBA Molecular Cell Research focuses on understanding the mechanisms of cellular processes at the molecular level. These include aspects of cellular signaling, signal transduction, cell cycle, apoptosis, intracellular trafficking, secretory and endocytic pathways, biogenesis of cell organelles, cytoskeletal structures, cellular interactions, cell/tissue differentiation and cellular enzymology. Also included are studies at the interface between Cell Biology and Biophysics which apply for example novel imaging methods for characterizing cellular processes.