Metformin attenuates myocardial ischemia/reperfusion-induced ferroptosis through the upregulation of Nur77-mediated IDH1.

IF 4.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et biophysica acta. Molecular cell research Pub Date : 2025-03-15 DOI:10.1016/j.bbamcr.2025.119934
Zhenhua Wu, Yunpeng Bai, Chao Chang, Yan Jiao, Qinliang Chen, Zhigang Guo
{"title":"Metformin attenuates myocardial ischemia/reperfusion-induced ferroptosis through the upregulation of Nur77-mediated IDH1.","authors":"Zhenhua Wu, Yunpeng Bai, Chao Chang, Yan Jiao, Qinliang Chen, Zhigang Guo","doi":"10.1016/j.bbamcr.2025.119934","DOIUrl":null,"url":null,"abstract":"<p><p>Current interventions for myocardial ischemia/reperfusion (I/R) injury focus on revascularization and the control of oxidative stress. Metformin can reduce I/R injury, with its protective effects extending beyond metabolic regulation. In this study, we investigated the cardioprotective mechanisms of metformin beyond AMPK activation, focusing on its effects on the Nur77-IDH1 axis. We employed myocardial I/R rat models and oxygen-glucose deprivation/reoxygenation in H9C2 cells, utilizing staining techniques, echocardiography, and molecular/cell-based assays. Metformin significantly mitigated myocardial I/R injury in rats, reducing PTGS2 expression, lowering iron content, decreased ROS accumulation, and increased mitochondrial function. Metformin also alleviated myocardial tissue damage and fibrosis and increased survival rates. In OGD/R-induced H9C2 cells, metformin suppressed ferroptosis, which could be reversed by Nur77 silencing. Metformin increased Nur77 and IDH1 expression by enhancing Nur77 translocation to the IDH1 promoter, inhibiting stress-related JNK/P38MAPK signaling. Catalytic site inhibitor IDH1 Inhibitor 5 (compound 2 AGI-5198) negated the protective effects of metformin. Collectively, these data reveal that metformin prevents myocardial I/R injury and ferroptosis through its effects on Nur77, IDH1 expression and inhibition of the JNK/P38 pathway. This highlights the novel therapeutic value of targeting ferroptosis with metformin to improve cardiac protection.</p>","PeriodicalId":8754,"journal":{"name":"Biochimica et biophysica acta. Molecular cell research","volume":" ","pages":"119934"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular cell research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbamcr.2025.119934","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Current interventions for myocardial ischemia/reperfusion (I/R) injury focus on revascularization and the control of oxidative stress. Metformin can reduce I/R injury, with its protective effects extending beyond metabolic regulation. In this study, we investigated the cardioprotective mechanisms of metformin beyond AMPK activation, focusing on its effects on the Nur77-IDH1 axis. We employed myocardial I/R rat models and oxygen-glucose deprivation/reoxygenation in H9C2 cells, utilizing staining techniques, echocardiography, and molecular/cell-based assays. Metformin significantly mitigated myocardial I/R injury in rats, reducing PTGS2 expression, lowering iron content, decreased ROS accumulation, and increased mitochondrial function. Metformin also alleviated myocardial tissue damage and fibrosis and increased survival rates. In OGD/R-induced H9C2 cells, metformin suppressed ferroptosis, which could be reversed by Nur77 silencing. Metformin increased Nur77 and IDH1 expression by enhancing Nur77 translocation to the IDH1 promoter, inhibiting stress-related JNK/P38MAPK signaling. Catalytic site inhibitor IDH1 Inhibitor 5 (compound 2 AGI-5198) negated the protective effects of metformin. Collectively, these data reveal that metformin prevents myocardial I/R injury and ferroptosis through its effects on Nur77, IDH1 expression and inhibition of the JNK/P38 pathway. This highlights the novel therapeutic value of targeting ferroptosis with metformin to improve cardiac protection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.00
自引率
2.00%
发文量
151
审稿时长
44 days
期刊介绍: BBA Molecular Cell Research focuses on understanding the mechanisms of cellular processes at the molecular level. These include aspects of cellular signaling, signal transduction, cell cycle, apoptosis, intracellular trafficking, secretory and endocytic pathways, biogenesis of cell organelles, cytoskeletal structures, cellular interactions, cell/tissue differentiation and cellular enzymology. Also included are studies at the interface between Cell Biology and Biophysics which apply for example novel imaging methods for characterizing cellular processes.
期刊最新文献
Metformin attenuates myocardial ischemia/reperfusion-induced ferroptosis through the upregulation of Nur77-mediated IDH1. Transcription factor EP300 targets SIRT5 to promote autophagy of nucleus pulposus cells and attenuate intervertebral disc degeneration. Increasing collagen synthesis in fibroblasts: The roles of PCL microspheres and the SAMD11–PLOD1 axis in skin rejuvenation Effect of claudin-1 or -3 expression on cation and water channel properties of claudin-2 Arylamine N-acetyltransferase 1 expression predicts glucose dependence and mitochondrial bioenergetics in cancer cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1