Mibu Cao , Li Tao , Youliang Zhang , Lingcong Zhou , Shu Wu , Haoxian Zhou , Yuanlong Ge , Ying Zou , Shengkang Luo
{"title":"Increasing collagen synthesis in fibroblasts: The roles of PCL microspheres and the SAMD11–PLOD1 axis in skin rejuvenation","authors":"Mibu Cao , Li Tao , Youliang Zhang , Lingcong Zhou , Shu Wu , Haoxian Zhou , Yuanlong Ge , Ying Zou , Shengkang Luo","doi":"10.1016/j.bbamcr.2025.119931","DOIUrl":null,"url":null,"abstract":"<div><div>The degradation of extracellular matrix proteins such as collagen and elastin with aging leads to skin sagging. Polycaprolactone (PCL) microspheres are used as facial fillers because of their ability to provide volume, biodegradability, and collagen-stimulating properties. The direct biological effects of PCL microspheres on fibroblasts, particularly in stimulating sustained collagen production, require further investigation. We detected the safety and effect of PCL microspheres on human fibroblasts and investigated new collagen synthesis and the thickness of C57BL/6 mouse skin. Through an RNA-seq analysis of differentially expressed genes, we identified a key regulator of collagen production in PCL-stimulated fibroblasts. Our research revealed that PCL microspheres are safe for human fibroblasts, promoting their proliferation and increasing new collagen synthesis and skin thickness. We identified sterile alpha motif domain containing 11 (SAMD11) as a key regulator of collagen production in PCLstimulated fibroblasts through an RNA-seq analysis. By increasing SAMD11 expression, PCL microspheres increase collagen synthesis and rejuvenate skin through the upregulation of procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 (PLOD1). This study elucidates the mechanism by which SAMD11 regulates the effects of PCL microspheres as collagen stimulants for skin rejuvenation, providing a foundation for the future development and refinement of similar materials.</div></div>","PeriodicalId":8754,"journal":{"name":"Biochimica et biophysica acta. Molecular cell research","volume":"1872 4","pages":"Article 119931"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular cell research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167488925000369","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The degradation of extracellular matrix proteins such as collagen and elastin with aging leads to skin sagging. Polycaprolactone (PCL) microspheres are used as facial fillers because of their ability to provide volume, biodegradability, and collagen-stimulating properties. The direct biological effects of PCL microspheres on fibroblasts, particularly in stimulating sustained collagen production, require further investigation. We detected the safety and effect of PCL microspheres on human fibroblasts and investigated new collagen synthesis and the thickness of C57BL/6 mouse skin. Through an RNA-seq analysis of differentially expressed genes, we identified a key regulator of collagen production in PCL-stimulated fibroblasts. Our research revealed that PCL microspheres are safe for human fibroblasts, promoting their proliferation and increasing new collagen synthesis and skin thickness. We identified sterile alpha motif domain containing 11 (SAMD11) as a key regulator of collagen production in PCLstimulated fibroblasts through an RNA-seq analysis. By increasing SAMD11 expression, PCL microspheres increase collagen synthesis and rejuvenate skin through the upregulation of procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 (PLOD1). This study elucidates the mechanism by which SAMD11 regulates the effects of PCL microspheres as collagen stimulants for skin rejuvenation, providing a foundation for the future development and refinement of similar materials.
期刊介绍:
BBA Molecular Cell Research focuses on understanding the mechanisms of cellular processes at the molecular level. These include aspects of cellular signaling, signal transduction, cell cycle, apoptosis, intracellular trafficking, secretory and endocytic pathways, biogenesis of cell organelles, cytoskeletal structures, cellular interactions, cell/tissue differentiation and cellular enzymology. Also included are studies at the interface between Cell Biology and Biophysics which apply for example novel imaging methods for characterizing cellular processes.