In vivo biocontrol potential of Bacillus plant growth-promoting rhizobacteria against pectinolytic plant pathogens.

IF 2.4 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Folia microbiologica Pub Date : 2024-10-31 DOI:10.1007/s12223-024-01214-8
Asmaa Benaissa, Merdia Bestami, Kheira Fellan, Rokaia Benmalek
{"title":"In vivo biocontrol potential of Bacillus plant growth-promoting rhizobacteria against pectinolytic plant pathogens.","authors":"Asmaa Benaissa, Merdia Bestami, Kheira Fellan, Rokaia Benmalek","doi":"10.1007/s12223-024-01214-8","DOIUrl":null,"url":null,"abstract":"<p><p>Bacillus is well known for producing a wide range of compounds that inhibit microbial phytopathogens. From this perspective, we were interested in evaluating the biocontrol potential of 5 plant growth-promoting rhizobacteria Bacillus species (PGPR-Bacillus) on 21 microbial pectinolytic plant pathogens isolated from previous studies. Phytopathogenicity and in vivo biocontrol potential of PGPR curative and preventive treatments were investigated from this angle. Overall, the pathogenicity test on healthy tomato, zucchini, and mandarin showed low rot to no symptoms for all PGPR strain culture treatments. Conversely, zucchini pre-treated with PGPR strains B. circulans and B. cereus for 72 h showed no signs of soft rot and remained healthy when in vitro contaminated with phytopathogens (Neisseria cinerea and Pichia anomala). Additionally, the PGPR-Bacillus strains were shown to be effective in mitigating the symptoms of soft rot in tomatoes, zucchini, and oranges using in vivo curative treatment. It is true that the majority of pectinolytic phytopathogenic strains exhibited antibiotic resistance. In vivo tests revealed that PGPR-Bacillus cell culture was effective against plant pathogens. Thus, PGPR-Bacillus can be considered a potential biocontrol agent for pectinolytic plant pathogens.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia microbiologica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12223-024-01214-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacillus is well known for producing a wide range of compounds that inhibit microbial phytopathogens. From this perspective, we were interested in evaluating the biocontrol potential of 5 plant growth-promoting rhizobacteria Bacillus species (PGPR-Bacillus) on 21 microbial pectinolytic plant pathogens isolated from previous studies. Phytopathogenicity and in vivo biocontrol potential of PGPR curative and preventive treatments were investigated from this angle. Overall, the pathogenicity test on healthy tomato, zucchini, and mandarin showed low rot to no symptoms for all PGPR strain culture treatments. Conversely, zucchini pre-treated with PGPR strains B. circulans and B. cereus for 72 h showed no signs of soft rot and remained healthy when in vitro contaminated with phytopathogens (Neisseria cinerea and Pichia anomala). Additionally, the PGPR-Bacillus strains were shown to be effective in mitigating the symptoms of soft rot in tomatoes, zucchini, and oranges using in vivo curative treatment. It is true that the majority of pectinolytic phytopathogenic strains exhibited antibiotic resistance. In vivo tests revealed that PGPR-Bacillus cell culture was effective against plant pathogens. Thus, PGPR-Bacillus can be considered a potential biocontrol agent for pectinolytic plant pathogens.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
促进植物生长根瘤菌对果胶溶解性植物病原体的体内生物防治潜力。
众所周知,芽孢杆菌能产生多种抑制微生物植物病原体的化合物。从这个角度出发,我们有兴趣评估 5 种植物生长促进根瘤菌芽孢杆菌(PGPR-Bacillus)对以往研究中分离出的 21 种微生物果胶溶植物病原体的生物防治潜力。从这个角度研究了 PGPR 治疗和预防方法的植物致病性和体内生物防治潜力。总体而言,在健康番茄、西葫芦和柑橘上进行的致病性试验表明,所有 PGPR 菌株培养处理的腐烂率都很低,甚至没有症状。相反,用 PGPR 菌株 B. circulans 和 B. cereus 预处理 72 小时的西葫芦没有出现软腐迹象,并且在体外受到植物病原体(Neisseria cinerea 和 Pichia anomala)污染时仍保持健康。此外,PGPR-芽孢杆菌菌株还能有效减轻西红柿、西葫芦和橘子的软腐症状。的确,大多数果胶溶植物病原菌菌株都具有抗生素抗性。体内试验显示,PGPR-芽孢杆菌细胞培养物对植物病原体有效。因此,PGPR-芽孢杆菌可被视为果胶溶解性植物病原体的潜在生物控制剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Folia microbiologica
Folia microbiologica 工程技术-生物工程与应用微生物
CiteScore
5.80
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: Unlike journals which specialize ever more narrowly, Folia Microbiologica (FM) takes an open approach that spans general, soil, medical and industrial microbiology, plus some branches of immunology. This English-language journal publishes original papers, reviews and mini-reviews, short communications and book reviews. The coverage includes cutting-edge methods and promising new topics, as well as studies using established methods that exhibit promise in practical applications such as medicine, animal husbandry and more. The coverage of FM is expanding beyond Central and Eastern Europe, with a growing proportion of its contents contributed by international authors.
期刊最新文献
Anticancer effect of a combinatorial treatment of 5-fluorouracil and cell extract of some probiotic lactobacilli strains isolated from camel milk on colorectal cancer cells. Characterization of Archaea membrane lipids in radioactive springs using shotgun lipidomics. Prolonged fever in a 13-year-old girl misdiagnosed as Ochrobactrum spp. bacteremia-the pitfalls of diagnostic Brucella spondylitis in a non-endemic country. Optimized production of laccase from Pseudomonas stutzeri and its biodegradation of lignin in biomass. Correction to: Characteristics and in vitro properties of potential probiotic strain Fructobacillus tropaeoli KKP 3032 isolated from orange juice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1