Rapid-response, low-detection-limit, positive-negative air pressure sensing: GaN chips integrated with hydrophobic PDMS films.

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION Microsystems & Nanoengineering Pub Date : 2024-11-01 DOI:10.1038/s41378-024-00766-6
Sizhe Gui, Binlu Yu, Yumeng Luo, Liang Chen, Kwai Hei Li
{"title":"Rapid-response, low-detection-limit, positive-negative air pressure sensing: GaN chips integrated with hydrophobic PDMS films.","authors":"Sizhe Gui, Binlu Yu, Yumeng Luo, Liang Chen, Kwai Hei Li","doi":"10.1038/s41378-024-00766-6","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the importance of positive and negative pressure sensing in numerous domains, the availability of a single sensing unit adept at handling this dual task remains highly limited. This study introduces a compact optical device capable of swiftly and precisely detecting positive and negative pressures ranging from -35 kPa to 35 kPa. The GaN chip, which serves as a core component of the device, is monolithically integrated with light-emitting and light-detecting elements. By combining a deformable PDMS film coated with a hydrophobic layer, the chip can respond to changes in optical reflectance induced by pressure fluctuations. The integrated sensing device has low detection limits of 4.3 Pa and -7.8 Pa and fast response times of 0.14 s and 0.22 s for positive and negative pressure variations, respectively. The device also demonstrates adaptability in capturing distinct human breathing patterns. The proposed device, characterized by its compactness, responsiveness, and ease of operation, holds promise for a variety of pressure-sensing applications.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 1","pages":"162"},"PeriodicalIF":7.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527884/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00766-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the importance of positive and negative pressure sensing in numerous domains, the availability of a single sensing unit adept at handling this dual task remains highly limited. This study introduces a compact optical device capable of swiftly and precisely detecting positive and negative pressures ranging from -35 kPa to 35 kPa. The GaN chip, which serves as a core component of the device, is monolithically integrated with light-emitting and light-detecting elements. By combining a deformable PDMS film coated with a hydrophobic layer, the chip can respond to changes in optical reflectance induced by pressure fluctuations. The integrated sensing device has low detection limits of 4.3 Pa and -7.8 Pa and fast response times of 0.14 s and 0.22 s for positive and negative pressure variations, respectively. The device also demonstrates adaptability in capturing distinct human breathing patterns. The proposed device, characterized by its compactness, responsiveness, and ease of operation, holds promise for a variety of pressure-sensing applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
快速响应、低检测限、正负气压传感:与疏水性 PDMS 薄膜集成的氮化镓芯片。
尽管正负压传感在许多领域都非常重要,但能够胜任这一双重任务的单一传感装置仍然非常有限。本研究介绍了一种紧凑型光学装置,能够快速、精确地检测-35 kPa 至 35 kPa 的正负压。作为该装置核心部件的氮化镓芯片与发光和光检测元件单片集成。通过结合涂有疏水层的可变形 PDMS 薄膜,芯片可以对压力波动引起的光学反射率变化做出响应。该集成传感装置的检测限低至 4.3 Pa 和 -7.8 Pa,对正压和负压变化的快速响应时间分别为 0.14 秒和 0.22 秒。该装置还具有捕捉人类独特呼吸模式的适应性。该设备结构紧凑、反应灵敏、操作简便,有望用于各种压力感应应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
期刊最新文献
Single-cell electro-mechanical shear flow deformability cytometry. Automating life science labs at the single-cell level through precise ultrasonic liquid sample ejection: PULSE. Bifunctional nanoprobe for simultaneous detection of intracellular reactive oxygen species and temperature in single cells. Sound innovations for biofabrication and tissue engineering. A novel gyroscope based on the slow surface acoustic wave in a phononic metamaterial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1