From Bulk to Binding: Decoding the Entry of PET into Hydrolase Binding Pockets.

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY JACS Au Pub Date : 2024-09-26 eCollection Date: 2024-10-28 DOI:10.1021/jacsau.4c00718
Anna Jäckering, Frederike Göttsch, Moritz Schäffler, Mark Doerr, Uwe T Bornscheuer, Ren Wei, Birgit Strodel
{"title":"From Bulk to Binding: Decoding the Entry of PET into Hydrolase Binding Pockets.","authors":"Anna Jäckering, Frederike Göttsch, Moritz Schäffler, Mark Doerr, Uwe T Bornscheuer, Ren Wei, Birgit Strodel","doi":"10.1021/jacsau.4c00718","DOIUrl":null,"url":null,"abstract":"<p><p>Plastic-degrading enzymes facilitate the biocatalytic recycling of poly(ethylene terephthalate) (PET), a significant synthetic polymer, and substantial progress has been made in utilizing PET hydrolases for industrial applications. To fully exploit the potential of these enzymes, a deeper mechanistic understanding followed by targeted protein engineering is essential. Through advanced molecular dynamics simulations and free energy analysis methods, we elucidated the complete pathway from the initial binding of two PET hydrolases-the thermophilic leaf-branch compost cutinase (LCC) and polyester hydrolase 1 (PES-H1)-to an amorphous PET substrate, ultimately leading to a PET chain entering the active site in a hydrolyzable conformation. Our findings indicate that initial PET binding is nonspecific and driven by polar and hydrophobic interactions. We demonstrate that the subsequent entry of PET into the active site can occur via one of three key pathways, identifying barriers related to both PET-PET and PET-enzyme interactions, as well as specific residues highlighted through <i>in silico</i> and <i>in vitro</i> mutagenesis. These insights not only enhance our understanding of the mechanisms underlying PET degradation and facilitate the development of targeted enzyme enhancement strategies but also provide a novel framework applicable to enzyme studies across various disciplines.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"4 10","pages":"4000-4012"},"PeriodicalIF":8.5000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522925/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/jacsau.4c00718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/28 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Plastic-degrading enzymes facilitate the biocatalytic recycling of poly(ethylene terephthalate) (PET), a significant synthetic polymer, and substantial progress has been made in utilizing PET hydrolases for industrial applications. To fully exploit the potential of these enzymes, a deeper mechanistic understanding followed by targeted protein engineering is essential. Through advanced molecular dynamics simulations and free energy analysis methods, we elucidated the complete pathway from the initial binding of two PET hydrolases-the thermophilic leaf-branch compost cutinase (LCC) and polyester hydrolase 1 (PES-H1)-to an amorphous PET substrate, ultimately leading to a PET chain entering the active site in a hydrolyzable conformation. Our findings indicate that initial PET binding is nonspecific and driven by polar and hydrophobic interactions. We demonstrate that the subsequent entry of PET into the active site can occur via one of three key pathways, identifying barriers related to both PET-PET and PET-enzyme interactions, as well as specific residues highlighted through in silico and in vitro mutagenesis. These insights not only enhance our understanding of the mechanisms underlying PET degradation and facilitate the development of targeted enzyme enhancement strategies but also provide a novel framework applicable to enzyme studies across various disciplines.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从散装到结合:解码 PET 进入水解酶结合口袋的过程
塑料降解酶促进了聚对苯二甲酸乙二醇酯(PET)这一重要合成聚合物的生物催化回收,在利用 PET水解酶进行工业应用方面取得了重大进展。要充分挖掘这些酶的潜力,必须加深对其机理的理解,然后进行有针对性的蛋白质工程。通过先进的分子动力学模拟和自由能分析方法,我们阐明了两种 PET水解酶--嗜热叶枝堆肥切片酶(LCC)和聚酯水解酶1(PES-H1)--与无定形PET底物最初结合,最终导致PET链以可水解构象进入活性位点的完整路径。我们的研究结果表明,最初的 PET 结合是非特异性的,由极性和疏水相互作用驱动。我们证明了 PET 随后进入活性位点可通过三种关键途径之一发生,确定了与 PET-PET 和 PET- 酶相互作用有关的障碍,以及通过硅学和体外诱变突显的特定残基。这些见解不仅加深了我们对 PET 降解机制的理解,促进了有针对性的酶增强策略的开发,而且提供了一个适用于各学科酶研究的新框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
Issue Editorial Masthead Issue Publication Information Revealing the Ultrafast Energy Transfer Pathways in Energetic Materials: Time-Dependent and Quantum State-Resolved Mechanistic Insights into Nonadiabatic Interband Transitions on a Semiconductor Surface Induced by Hydrogen Atom Collisions Sequence-Encoded Spatiotemporal Dependence of Viscoelasticity of Protein Condensates Using Computational Microrheology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1