Opportunities at the Intersection of 3D Printed Polymers and Pyrolysis for the Microfabrication of Carbon-Based Energy Materials.

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY JACS Au Pub Date : 2024-09-26 eCollection Date: 2024-10-28 DOI:10.1021/jacsau.4c00555
Philip R Onffroy, Samuel Chiovoloni, Han Lin Kuo, Max A Saccone, Jennifer Q Lu, Joseph M DeSimone
{"title":"Opportunities at the Intersection of 3D Printed Polymers and Pyrolysis for the Microfabrication of Carbon-Based Energy Materials.","authors":"Philip R Onffroy, Samuel Chiovoloni, Han Lin Kuo, Max A Saccone, Jennifer Q Lu, Joseph M DeSimone","doi":"10.1021/jacsau.4c00555","DOIUrl":null,"url":null,"abstract":"<p><p>In an era marked by a growing demand for sustainable and high-performance materials, the convergence of additive manufacturing (AM), also known as 3D printing, and the thermal treatment, or pyrolysis, of polymers to form high surface area hierarchically structured carbon materials stands poised to catalyze transformative advancements across a spectrum of electrification and energy storage applications. Designing 3D printed polymers using low-cost resins specifically for conversion to high performance carbon structures via post-printing thermal treatments overcomes the challenges of 3D printing pure carbon directly due to the inability of pure carbon to be polymerized, melted, or sintered under ambient conditions. In this perspective, we outline the current state of AM methods that have been used in combination with pyrolysis to generate 3D carbon structures and highlight promising systems to explore further. As part of this endeavor, we discuss the effects of 3D printed polymer chemistry composition, additives, and pyrolysis conditions on resulting 3D pyrolytic carbon properties. Furthermore, we demonstrate the viability of combining continuous liquid interface production (CLIP) vat photopolymerization with pyrolysis as a promising avenue for producing 3D pyrolytic carbon lattice structures with 15 μm feature resolution, paving way for 3D carbon-based sustainable energy applications.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"4 10","pages":"3706-3726"},"PeriodicalIF":8.5000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522932/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/jacsau.4c00555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/28 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In an era marked by a growing demand for sustainable and high-performance materials, the convergence of additive manufacturing (AM), also known as 3D printing, and the thermal treatment, or pyrolysis, of polymers to form high surface area hierarchically structured carbon materials stands poised to catalyze transformative advancements across a spectrum of electrification and energy storage applications. Designing 3D printed polymers using low-cost resins specifically for conversion to high performance carbon structures via post-printing thermal treatments overcomes the challenges of 3D printing pure carbon directly due to the inability of pure carbon to be polymerized, melted, or sintered under ambient conditions. In this perspective, we outline the current state of AM methods that have been used in combination with pyrolysis to generate 3D carbon structures and highlight promising systems to explore further. As part of this endeavor, we discuss the effects of 3D printed polymer chemistry composition, additives, and pyrolysis conditions on resulting 3D pyrolytic carbon properties. Furthermore, we demonstrate the viability of combining continuous liquid interface production (CLIP) vat photopolymerization with pyrolysis as a promising avenue for producing 3D pyrolytic carbon lattice structures with 15 μm feature resolution, paving way for 3D carbon-based sustainable energy applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维打印聚合物与热解技术在碳基能源材料微细加工方面的交叉机遇。
在对可持续高性能材料的需求日益增长的时代,增材制造(AM)(也称为三维打印)与聚合物热处理(或热解)的融合,形成了高比表面积分层结构碳材料,有望在电气化和能源存储应用领域推动变革性进步。由于纯碳无法在环境条件下聚合、熔化或烧结,因此使用低成本树脂设计三维打印聚合物,专门用于通过打印后热处理转换为高性能碳结构,克服了直接三维打印纯碳所面临的挑战。在本文中,我们概述了结合热解生成三维碳结构的 AM 方法的现状,并重点介绍了有待进一步探索的前景广阔的系统。作为这项工作的一部分,我们讨论了三维打印聚合物化学成分、添加剂和热解条件对生成的三维热解碳特性的影响。此外,我们还展示了将连续液相界面生产(CLIP)槽式光聚合与热解结合起来的可行性,这是生产特征分辨率为 15 μm 的三维热解碳晶格结构的一条可行途径,为基于三维碳的可持续能源应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
Issue Editorial Masthead Issue Publication Information Revealing the Ultrafast Energy Transfer Pathways in Energetic Materials: Time-Dependent and Quantum State-Resolved Mechanistic Insights into Nonadiabatic Interband Transitions on a Semiconductor Surface Induced by Hydrogen Atom Collisions Sequence-Encoded Spatiotemporal Dependence of Viscoelasticity of Protein Condensates Using Computational Microrheology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1