LineageFilter: Improved Proteotyping of Complex Samples Using Metaproteomics and Machine Learning

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-10-19 DOI:10.1021/acs.jproteome.4c0018410.1021/acs.jproteome.4c00184
Hamid Hachemi, Jean Armengaud, Lucia Grenga* and Olivier Pible, 
{"title":"LineageFilter: Improved Proteotyping of Complex Samples Using Metaproteomics and Machine Learning","authors":"Hamid Hachemi,&nbsp;Jean Armengaud,&nbsp;Lucia Grenga* and Olivier Pible,&nbsp;","doi":"10.1021/acs.jproteome.4c0018410.1021/acs.jproteome.4c00184","DOIUrl":null,"url":null,"abstract":"<p >Metaproteomics is a powerful tool to characterize how microbiota function by analyzing their proteic content by tandem mass spectrometry. Given the complexity of these samples, accurately assessing their taxonomical composition without prior information based solely on peptide sequences remains a challenge. Here, we present LineageFilter, a new python-based AI software for refined proteotyping of complex samples using metaproteomics interpreted data and machine learning. Given a tentative list of taxa, their abundances, and the scores associated with their identified peptides, LineageFilter computes a comprehensive set of features for each identified taxon at all taxonomical ranks. Its machine-learning model then assesses the likelihood of each taxon’s presence based on these features, enabling improved proteotyping and sample-specific database construction.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00184","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Metaproteomics is a powerful tool to characterize how microbiota function by analyzing their proteic content by tandem mass spectrometry. Given the complexity of these samples, accurately assessing their taxonomical composition without prior information based solely on peptide sequences remains a challenge. Here, we present LineageFilter, a new python-based AI software for refined proteotyping of complex samples using metaproteomics interpreted data and machine learning. Given a tentative list of taxa, their abundances, and the scores associated with their identified peptides, LineageFilter computes a comprehensive set of features for each identified taxon at all taxonomical ranks. Its machine-learning model then assesses the likelihood of each taxon’s presence based on these features, enabling improved proteotyping and sample-specific database construction.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LineageFilter:利用元蛋白质组学和机器学习改进复杂样本的蛋白质分型
元蛋白质组学是一种强大的工具,可通过串联质谱分析微生物群的蛋白质含量来描述微生物群的功能。鉴于这些样本的复杂性,在没有事先信息的情况下仅根据肽序列准确评估其分类组成仍然是一项挑战。在此,我们介绍一款基于 python- 的新型人工智能软件 LineageFilter,该软件可利用元蛋白组学解释数据和机器学习对复杂样本进行精细蛋白分型。LineageFilter 给定了一个暂定的分类群列表、它们的丰度以及与其鉴定肽段相关的分数,它能为每个已鉴定的分类群计算出所有分类等级的综合特征集。然后,它的机器学习模型会根据这些特征评估每个分类群存在的可能性,从而改进蛋白质分型和特定样本数据库的构建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1