{"title":"Impact of multi-cationic B-sublattice upon crystal structure, transport and electrochemical properties of perovskite oxides LaBO3","authors":"","doi":"10.1016/j.ssi.2024.116729","DOIUrl":null,"url":null,"abstract":"<div><div>The oxygen exchange with the gas phase, thermal expansion, and electrical transport properties of a multi-cationic perovskite LaMn<sub>0.2</sub>Fe<sub>0.2</sub>Co<sub>0.2</sub>Ni<sub>0.2</sub>Cu<sub>0.2</sub>O<sub>3–δ</sub> and its four-cation derivatives have been investigated. The B-sublattice content was found to impact the crystal structure, expansion, and oxygen release with temperature, as well as the electrical properties. The oxides exhibit predominantly p-type semiconducting behavior, with activation energies ranging from 0.04 to 0.26 eV. The optimal compound of LaFe<sub>0.25</sub>Co<sub>0.25</sub>Ni<sub>0.25</sub>Cu<sub>0.25</sub>O<sub>3–δ</sub> was selected based on the cobination of the highest oxygen nonstiochiometry with maximum electrical conductivity, which reaches almost 500 S/cm at 750 °C. The symmetrical cell on LSGM supporting electrolyte has a polarization resistance of 0.12 Ω cm<sup>2</sup> at 800 °C and an activation energy of 152 kJ/mol. The obtained characteristic was found to be better than one for the five-cation perovskite, casting doubt on the advantages of applying the high-entropy materials concept to the development of solid oxide fuel cells.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824002777","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The oxygen exchange with the gas phase, thermal expansion, and electrical transport properties of a multi-cationic perovskite LaMn0.2Fe0.2Co0.2Ni0.2Cu0.2O3–δ and its four-cation derivatives have been investigated. The B-sublattice content was found to impact the crystal structure, expansion, and oxygen release with temperature, as well as the electrical properties. The oxides exhibit predominantly p-type semiconducting behavior, with activation energies ranging from 0.04 to 0.26 eV. The optimal compound of LaFe0.25Co0.25Ni0.25Cu0.25O3–δ was selected based on the cobination of the highest oxygen nonstiochiometry with maximum electrical conductivity, which reaches almost 500 S/cm at 750 °C. The symmetrical cell on LSGM supporting electrolyte has a polarization resistance of 0.12 Ω cm2 at 800 °C and an activation energy of 152 kJ/mol. The obtained characteristic was found to be better than one for the five-cation perovskite, casting doubt on the advantages of applying the high-entropy materials concept to the development of solid oxide fuel cells.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.