{"title":"STAR-RIS-NOMA empowered vehicle-to-vehicle communications: Outage and ergodic capacity analysis","authors":"Luxmi Kant Vishwakarma , Radhika Gour , Suneel Yadav , Adão Silva","doi":"10.1016/j.vehcom.2024.100852","DOIUrl":null,"url":null,"abstract":"<div><div>This paper delves into the performance evaluation of a non-orthogonal multiple access (NOMA) enabled vehicle-to-vehicle (V2V) communication system empowered by simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RIS). Herein, we consider that a moving access point (AP) transmits superimposed signals to nearby and distant NOMA vehicles simultaneously via reflection and transmission through a STAR-RIS equipped vehicle with 2<em>N</em> reconfigurable elements, respectively. Specifically, by characterizing all V2V channels as double-Rayleigh fading distributed, we derive the outage probability (OP) and ergodic capacity (EC) expressions for each NOMA vehicle, by employing both perfect and imperfect successive interference cancellation (SIC) at nearby vehicle user. Furthermore, we present the asymptotic OP behavior at high signal-to-noise ratio (SNR) regime to gain deeper insights into the diversity order of NOMA vehicles. The findings reveal that the nearby vehicle under perfect SIC and far vehicle experience a diversity order of <span><math><mfrac><mrow><mi>N</mi><msup><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow><mrow><mn>256</mn><mo>−</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></math></span>, which is the function of number of reconfigurable elements (<em>N</em>) in the STAR-RIS. Whereas, a zero diversity order is obtained for nearby user under imperfect SIC case. Moreover, we analytically discuss the high SNR slopes of EC for both user vehicles. Furthermore, Monte-Carlo simulations are conducted to validate our analytical results under various channel and system parameter configurations. We also provide a comparison between the proposed scheme and STAR-RIS based orthogonal multiple access and cooperative relaying systems.</div></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"50 ","pages":"Article 100852"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221420962400127X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper delves into the performance evaluation of a non-orthogonal multiple access (NOMA) enabled vehicle-to-vehicle (V2V) communication system empowered by simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RIS). Herein, we consider that a moving access point (AP) transmits superimposed signals to nearby and distant NOMA vehicles simultaneously via reflection and transmission through a STAR-RIS equipped vehicle with 2N reconfigurable elements, respectively. Specifically, by characterizing all V2V channels as double-Rayleigh fading distributed, we derive the outage probability (OP) and ergodic capacity (EC) expressions for each NOMA vehicle, by employing both perfect and imperfect successive interference cancellation (SIC) at nearby vehicle user. Furthermore, we present the asymptotic OP behavior at high signal-to-noise ratio (SNR) regime to gain deeper insights into the diversity order of NOMA vehicles. The findings reveal that the nearby vehicle under perfect SIC and far vehicle experience a diversity order of , which is the function of number of reconfigurable elements (N) in the STAR-RIS. Whereas, a zero diversity order is obtained for nearby user under imperfect SIC case. Moreover, we analytically discuss the high SNR slopes of EC for both user vehicles. Furthermore, Monte-Carlo simulations are conducted to validate our analytical results under various channel and system parameter configurations. We also provide a comparison between the proposed scheme and STAR-RIS based orthogonal multiple access and cooperative relaying systems.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.