Fatigue life analysis of threaded connections in offshore wind turbines

IF 4.3 2区 工程技术 Q1 ENGINEERING, OCEAN Applied Ocean Research Pub Date : 2024-10-31 DOI:10.1016/j.apor.2024.104287
Alessandro Annoni , Carol Johnston , Ali Mehmanparast
{"title":"Fatigue life analysis of threaded connections in offshore wind turbines","authors":"Alessandro Annoni ,&nbsp;Carol Johnston ,&nbsp;Ali Mehmanparast","doi":"10.1016/j.apor.2024.104287","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid expansion of the installed offshore wind capacity around the world, it is essential to improve the structural integrity of these energy structures for reduced electricity cost and prolonged operational lifespans. An important part of the offshore wind turbine structures is the connection between the monopile foundation and the transition piece. Currently the dominant technology for connecting the monopile to transition piece is using L flanges held together with large-scale bolts. Threaded connections have emerged as a prevalent technology for linking sections of wind turbines, boasting commendable performance despite some inherent drawbacks. This study conducts a comprehensive review of the recommended fatigue design curves for threaded connections in international standards and compares them with the existing fatigue data on medium to large scale bolt sizes. Additionally, the fatigue behaviour of M72 threaded connections has been further analysed by performing new tests with two different values of mean stress. The obtained data from this study have been discussed in terms of the level of conservatism in the recommended fatigue design curves available in international standards for threaded connections. Moreover, the experimental analysis has been combined with numerical and analytical investigations to provide further insight into the life prediction of the threaded connections under fatigue loading conditions.</div></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ocean Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141118724004085","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid expansion of the installed offshore wind capacity around the world, it is essential to improve the structural integrity of these energy structures for reduced electricity cost and prolonged operational lifespans. An important part of the offshore wind turbine structures is the connection between the monopile foundation and the transition piece. Currently the dominant technology for connecting the monopile to transition piece is using L flanges held together with large-scale bolts. Threaded connections have emerged as a prevalent technology for linking sections of wind turbines, boasting commendable performance despite some inherent drawbacks. This study conducts a comprehensive review of the recommended fatigue design curves for threaded connections in international standards and compares them with the existing fatigue data on medium to large scale bolt sizes. Additionally, the fatigue behaviour of M72 threaded connections has been further analysed by performing new tests with two different values of mean stress. The obtained data from this study have been discussed in terms of the level of conservatism in the recommended fatigue design curves available in international standards for threaded connections. Moreover, the experimental analysis has been combined with numerical and analytical investigations to provide further insight into the life prediction of the threaded connections under fatigue loading conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海上风力涡轮机螺纹连接的疲劳寿命分析
随着全球海上风电装机容量的迅速扩大,必须提高这些能源结构的结构完整性,以降低电力成本,延长运行寿命。海上风力涡轮机结构的一个重要部分是单桩基础和过渡部件之间的连接。目前,连接单桩和过渡部件的主流技术是使用大型螺栓将 L 型法兰固定在一起。螺纹连接已成为连接风力涡轮机各部分的主流技术,尽管存在一些固有缺陷,但其性能值得称道。本研究对国际标准中推荐的螺纹连接疲劳设计曲线进行了全面审查,并将其与现有的中大型螺栓疲劳数据进行了比较。此外,通过使用两种不同的平均应力值进行新的测试,进一步分析了 M72 螺纹连接的疲劳行为。本研究获得的数据已根据螺纹连接国际标准中推荐的疲劳设计曲线的保守程度进行了讨论。此外,实验分析还与数值和分析研究相结合,为疲劳加载条件下的螺纹连接寿命预测提供了更深入的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Ocean Research
Applied Ocean Research 地学-工程:大洋
CiteScore
8.70
自引率
7.00%
发文量
316
审稿时长
59 days
期刊介绍: The aim of Applied Ocean Research is to encourage the submission of papers that advance the state of knowledge in a range of topics relevant to ocean engineering.
期刊最新文献
Investigation of morphodynamic response to the storm-induced currents and waves in the Bay of Bengal Wave Energy Potential and the Role of Extreme Events on South America's Coasts. A Regional Frequency Analysis Evaluation, sampling and testing methods for offshore disturbed sands with plastic fines: A case study Dynamic response of three different floating platform (OC4, BSS, GVA) using multi-segment mooring system Numerical study of underwater acoustic radiation and propagation induced by structural vibration in ocean environments using FEM-BMSBM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1