Equation chapter 0 section 1Macro-driven stock market volatility prediction: Insights from a new hybrid machine learning approach

IF 7.5 1区 经济学 Q1 BUSINESS, FINANCE International Review of Financial Analysis Pub Date : 2024-11-01 DOI:10.1016/j.irfa.2024.103711
Qing Zeng , Xinjie Lu , Jin Xu , Yu Lin
{"title":"Equation chapter 0 section 1Macro-driven stock market volatility prediction: Insights from a new hybrid machine learning approach","authors":"Qing Zeng ,&nbsp;Xinjie Lu ,&nbsp;Jin Xu ,&nbsp;Yu Lin","doi":"10.1016/j.irfa.2024.103711","DOIUrl":null,"url":null,"abstract":"<div><div>This study comprehensively investigates stock market volatility based on over one hundred monthly macroeconomic variables, applying machine learning models. Methodological contribution integrating the random forest (RF) with the least absolute shrinkage and selection operator methods (LASSO). Importantly, the RF-LASSO model can robustly achieve the best forecasting performance under different circumstances. In addition, we focus on model explanation from different perspectives based on permutation importance and shapley additive explanation (SHAP) methods. This study illuminates novel insights into the realm of stock market volatility, harnessing the transformative potential of machine learning methodologies.</div></div>","PeriodicalId":48226,"journal":{"name":"International Review of Financial Analysis","volume":"96 ","pages":"Article 103711"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Financial Analysis","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1057521924006434","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study comprehensively investigates stock market volatility based on over one hundred monthly macroeconomic variables, applying machine learning models. Methodological contribution integrating the random forest (RF) with the least absolute shrinkage and selection operator methods (LASSO). Importantly, the RF-LASSO model can robustly achieve the best forecasting performance under different circumstances. In addition, we focus on model explanation from different perspectives based on permutation importance and shapley additive explanation (SHAP) methods. This study illuminates novel insights into the realm of stock market volatility, harnessing the transformative potential of machine learning methodologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
第 0 章第 1 节宏观驱动的股市波动预测:新型混合机器学习方法的启示
本研究基于一百多个月度宏观经济变量,应用机器学习模型对股市波动性进行了全面研究。其方法论贡献在于将随机森林(RF)与最小绝对收缩和选择算子方法(LASSO)相结合。重要的是,RF-LASSO 模型能在不同情况下稳健地实现最佳预测性能。此外,我们还基于置换重要性和夏普利加法解释(SHAP)方法,从不同角度对模型进行了解释。本研究阐明了股市波动领域的新见解,利用了机器学习方法的变革潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
9.80%
发文量
366
期刊介绍: The International Review of Financial Analysis (IRFA) is an impartial refereed journal designed to serve as a platform for high-quality financial research. It welcomes a diverse range of financial research topics and maintains an unbiased selection process. While not limited to U.S.-centric subjects, IRFA, as its title suggests, is open to valuable research contributions from around the world.
期刊最新文献
The role of digital financial inclusion in promoting common prosperity: Evidence from Inner Mongolia Editorial Board Capital regulation, regulatory avoidance, and bank systemic risk The impact of top-down amplification of economic growth targets on CSR performance-evidence from China Greening the future: How green manufacturing shapes corporate environmental and ESG success
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1