Guangtai Shi, Manqi Tang, Wenjuan Lv, Xiaodong Peng, Hui Quan
{"title":"Identification of the vortex in the main flow passage of a multiphase pump and the relationship with pressure fluctuation","authors":"Guangtai Shi, Manqi Tang, Wenjuan Lv, Xiaodong Peng, Hui Quan","doi":"10.1002/ese3.1891","DOIUrl":null,"url":null,"abstract":"<p>This article investigates the evolution of vortex structures in the impeller channel of a multiphase pump. By capturing the vortices in the impeller channel using the vorticity and <i>Q</i>-criterion, the generation location of the vortex structures is analyzed, and the pressure fluctuations induced by vortices in the main flow passage of the impeller are studied in terms of their time- and frequency-domain characteristics. The relationship between the vorticity and the amplitude of pressure fluctuations at the main frequency of the impeller is further investigated. This study develops a method of identifying vortices in the impeller channel of the multiphase pump, and reveals the intrinsic connection between the vortices and pressure fluctuations in the main flow passage. These findings offer some suggestions for eliminating the influence of vortices and enhancing the pressurizing capabilities of multiphase pumps.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 10","pages":"4394-4413"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1891","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1891","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This article investigates the evolution of vortex structures in the impeller channel of a multiphase pump. By capturing the vortices in the impeller channel using the vorticity and Q-criterion, the generation location of the vortex structures is analyzed, and the pressure fluctuations induced by vortices in the main flow passage of the impeller are studied in terms of their time- and frequency-domain characteristics. The relationship between the vorticity and the amplitude of pressure fluctuations at the main frequency of the impeller is further investigated. This study develops a method of identifying vortices in the impeller channel of the multiphase pump, and reveals the intrinsic connection between the vortices and pressure fluctuations in the main flow passage. These findings offer some suggestions for eliminating the influence of vortices and enhancing the pressurizing capabilities of multiphase pumps.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.