Nan Zhang, Qianjun Jia, Xingping Lai, Yun Zhang, Songtao Ji, Baoxu Yan, Helong Gu
{"title":"Mechanical properties of gypsum mine rock around a strategic petroleum reserve (SPR) cavern under the crude oil seepage condition","authors":"Nan Zhang, Qianjun Jia, Xingping Lai, Yun Zhang, Songtao Ji, Baoxu Yan, Helong Gu","doi":"10.1002/ese3.1893","DOIUrl":null,"url":null,"abstract":"<p>As China's demand for imported oil continues to grow, large-scale oil storage facilities have become increasingly important. Currently, China primarily uses underground salt cavern spaces and newly excavated underground water-sealed caverns for oil storage, which places high demands on the rock formations. China has abundant and widely distributed gypsum mineral resources, and utilizing abandoned gypsum mines for oil storage could not only turn waste into treasure by controlling underground space but also generate significant economic and social value. This article aims to systematically evaluate the mechanical properties of gypsum rock through long-term immersion tests in crude oil to assess the impact of crude oil immersion on the mechanical performance of gypsum rock and explore the feasibility of using gypsum mines as long-term stable oil storage caverns. The results show that oil immersion treatment reduces the uniaxial tensile strength of gypsum samples, but has little effect on their compressive strength and long-term strength. From a mechanical performance perspective, it is feasible to use gypsum mine voids for crude oil storage.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 10","pages":"4414-4428"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1893","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1893","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
As China's demand for imported oil continues to grow, large-scale oil storage facilities have become increasingly important. Currently, China primarily uses underground salt cavern spaces and newly excavated underground water-sealed caverns for oil storage, which places high demands on the rock formations. China has abundant and widely distributed gypsum mineral resources, and utilizing abandoned gypsum mines for oil storage could not only turn waste into treasure by controlling underground space but also generate significant economic and social value. This article aims to systematically evaluate the mechanical properties of gypsum rock through long-term immersion tests in crude oil to assess the impact of crude oil immersion on the mechanical performance of gypsum rock and explore the feasibility of using gypsum mines as long-term stable oil storage caverns. The results show that oil immersion treatment reduces the uniaxial tensile strength of gypsum samples, but has little effect on their compressive strength and long-term strength. From a mechanical performance perspective, it is feasible to use gypsum mine voids for crude oil storage.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.