Phenoxy-1,2-dioxetane-Based Activatable Chemiluminescent Probes: Tuning of Photophysical Properties for Tracing Enzymatic Activities in Living Cells

IF 3.6 3区 化学 Q2 CHEMISTRY, ANALYTICAL Analyst Pub Date : 2024-11-01 DOI:10.1039/d4an01082e
Jagpreet Singh Sidhu, Gurjot Kaur, Atharva Rajesh Chavan, Mandeep Chahal, Rajeev Taliyan
{"title":"Phenoxy-1,2-dioxetane-Based Activatable Chemiluminescent Probes: Tuning of Photophysical Properties for Tracing Enzymatic Activities in Living Cells","authors":"Jagpreet Singh Sidhu, Gurjot Kaur, Atharva Rajesh Chavan, Mandeep Chahal, Rajeev Taliyan","doi":"10.1039/d4an01082e","DOIUrl":null,"url":null,"abstract":"The use of chemiluminophores for tracing enzymatic activities in live-cell imaging has gained significant attention, making them valuable tools for diagnostic applications. Among various chemiluminophores, the phenoxy-1,2-dioxetane scaffold exhibits significant structural versatility and its activation is governed by the Chemically Initiated Electron Exchange Luminescence (CIEEL) mechanism. This mechanism can be initiated by enzymatic activity, changes in pH, or other chemical stimuli. The photophysical properties of phenoxy-1,2-dioxetanes can be fine-tuned through the incorporation of different substituents on the phenolic ring and by anchoring them with specific triggers. This review discusses the variations in physicochemical properties, including emission maxima, quantum yield, aqueous solubility, and pKa, as influenced by structural modifications, thereby establishing a comprehensive structure-activity relationship. Furthermore, it categorises the probes based on different enzyme classes, such as hydrolase-sensitive probes, oxidoreductase-responsive probes, and transferase-activatable phenoxy-1,2-dioxetanes, offering a promising platform technology for the early diagnosis of diseases and disorders. The summary section highlights key opportunities and limitations associated with applying phenoxy-1,2-dioxetanes in achieving precise and effective enzyme assays.","PeriodicalId":63,"journal":{"name":"Analyst","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analyst","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4an01082e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The use of chemiluminophores for tracing enzymatic activities in live-cell imaging has gained significant attention, making them valuable tools for diagnostic applications. Among various chemiluminophores, the phenoxy-1,2-dioxetane scaffold exhibits significant structural versatility and its activation is governed by the Chemically Initiated Electron Exchange Luminescence (CIEEL) mechanism. This mechanism can be initiated by enzymatic activity, changes in pH, or other chemical stimuli. The photophysical properties of phenoxy-1,2-dioxetanes can be fine-tuned through the incorporation of different substituents on the phenolic ring and by anchoring them with specific triggers. This review discusses the variations in physicochemical properties, including emission maxima, quantum yield, aqueous solubility, and pKa, as influenced by structural modifications, thereby establishing a comprehensive structure-activity relationship. Furthermore, it categorises the probes based on different enzyme classes, such as hydrolase-sensitive probes, oxidoreductase-responsive probes, and transferase-activatable phenoxy-1,2-dioxetanes, offering a promising platform technology for the early diagnosis of diseases and disorders. The summary section highlights key opportunities and limitations associated with applying phenoxy-1,2-dioxetanes in achieving precise and effective enzyme assays.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于苯氧基-1,2-二氧杂环丁烷的可活化化学发光探针:调节光物理特性以追踪活细胞中的酶活性
在活细胞成像中使用化学荧光团追踪酶的活动已受到广泛关注,使其成为诊断应用的重要工具。在各种化学荧光团中,苯氧基-1,2-二氧杂环丁烷支架具有显著的结构多样性,其活化受化学引发电子交换发光(CIEEL)机制控制。该机制可由酶活性、pH 值变化或其他化学刺激引发。苯氧基-1,2-二氧杂环丁烷的光物理特性可以通过在酚环上加入不同的取代基和使用特定的触发剂锚定来进行微调。本综述讨论了受结构修饰影响的物理化学特性变化,包括发射最大值、量子产率、水溶性和 pKa,从而建立了全面的结构-活性关系。此外,它还根据不同的酶类别对探针进行了分类,如水解酶敏感探针、氧化还原酶响应探针和可转移酶激活的苯氧基-1,2-二氧杂环丁烷,为疾病和失调的早期诊断提供了前景广阔的平台技术。摘要部分强调了应用苯氧基-1,2-二氧杂环丁烷实现精确有效的酶测定的主要机遇和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Analyst
Analyst 化学-分析化学
CiteScore
7.80
自引率
4.80%
发文量
636
审稿时长
1.9 months
期刊介绍: The home of premier fundamental discoveries, inventions and applications in the analytical and bioanalytical sciences
期刊最新文献
A nano-biosensing platform based on CuS-BSA for label-free fluorescence detection of Escherichia coli. An improved cancer diagnosis algorithm for protein mass spectrometry based on PCA and a one-dimensional neural network combining ResNet and SENet. Capillary-flow driven microfluidic sensor based on tyrosinase for fast user-friendly assessment of pesticide exposures. Phenoxy-1,2-dioxetane-Based Activatable Chemiluminescent Probes: Tuning of Photophysical Properties for Tracing Enzymatic Activities in Living Cells Molecularly Imprinted Polymer Sensors for Biomarker Detection in Cardiovascular diseases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1