Kaifeng Liu , Xiangyu Yu , Huizi Cui , Wannan Li, Weiwei Han
{"title":"GPT4Kinase: High-accuracy prediction of inhibitor-kinase binding affinity utilizing large language model","authors":"Kaifeng Liu , Xiangyu Yu , Huizi Cui , Wannan Li, Weiwei Han","doi":"10.1016/j.ijbiomac.2024.137069","DOIUrl":null,"url":null,"abstract":"<div><div>The accurate prediction of inhibitor-kinase binding affinity is crucial in biological research and medical applications. Particularly, kinases play a pivotal role in numerous cellular processes and are essential enzymes in Mitogen-Activated Protein Kinase (MAPK) signaling pathway. This present study harnesses the capabilities of Large Language Models (LLMs), specifically GPT-4, to predict the binding affinity between inhibitors and kinases within the MAPK pathway, including Raf protein kinase (RAF), Mitogen-activated protein kinase kinase (MEK) and Extracellular Signal-Regulated Kinase (ERK). Remarkably, GPT-4 achieved an impressive 87.31 % accuracy in prediction on RAF binding affinity, and 77.00 % accuracy in comprehensive prediction tasks, substantially outperforming existing mainstream methods such as Autodock Vina (21.21 %), BatchDTA (52.00 %) and KIPP (59.60 %). Furthermore, GPT-4 was employed to delineate the features of high-affinity and low-affinity molecules, as well as their contributing functional groups. These contributing groups were subsequently validated through molecular docking. Additionally, to validate the generalizability of the method, we applied it to six other kinases and achieved a maximum accuracy of 83.78 %. Also, we utilized a dataset comprising over 200 kinases, obtaining a high accuracy of 66.20 %. The study showcases the transformative impact of LLMs on molecular binding affinity prediction, with major implications for biological sciences and therapeutic development.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"282 ","pages":"Article 137069"},"PeriodicalIF":7.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813024078784","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The accurate prediction of inhibitor-kinase binding affinity is crucial in biological research and medical applications. Particularly, kinases play a pivotal role in numerous cellular processes and are essential enzymes in Mitogen-Activated Protein Kinase (MAPK) signaling pathway. This present study harnesses the capabilities of Large Language Models (LLMs), specifically GPT-4, to predict the binding affinity between inhibitors and kinases within the MAPK pathway, including Raf protein kinase (RAF), Mitogen-activated protein kinase kinase (MEK) and Extracellular Signal-Regulated Kinase (ERK). Remarkably, GPT-4 achieved an impressive 87.31 % accuracy in prediction on RAF binding affinity, and 77.00 % accuracy in comprehensive prediction tasks, substantially outperforming existing mainstream methods such as Autodock Vina (21.21 %), BatchDTA (52.00 %) and KIPP (59.60 %). Furthermore, GPT-4 was employed to delineate the features of high-affinity and low-affinity molecules, as well as their contributing functional groups. These contributing groups were subsequently validated through molecular docking. Additionally, to validate the generalizability of the method, we applied it to six other kinases and achieved a maximum accuracy of 83.78 %. Also, we utilized a dataset comprising over 200 kinases, obtaining a high accuracy of 66.20 %. The study showcases the transformative impact of LLMs on molecular binding affinity prediction, with major implications for biological sciences and therapeutic development.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.