Genome-wide associated study identifies FtPMEI13 gene conferring drought resistance in Tartary buckwheat.

IF 6.2 1区 生物学 Q1 PLANT SCIENCES The Plant Journal Pub Date : 2024-11-03 DOI:10.1111/tpj.17119
Jiayue He, Yanrong Hao, Yuqi He, Wei Li, Yaliang Shi, Muhammad Khurshid, Dili Lai, Chongzhong Ma, Xiangru Wang, Jinbo Li, Jianping Cheng, Alisdair R Fernie, Jingjun Ruan, Kaixuan Zhang, Meiliang Zhou
{"title":"Genome-wide associated study identifies FtPMEI13 gene conferring drought resistance in Tartary buckwheat.","authors":"Jiayue He, Yanrong Hao, Yuqi He, Wei Li, Yaliang Shi, Muhammad Khurshid, Dili Lai, Chongzhong Ma, Xiangru Wang, Jinbo Li, Jianping Cheng, Alisdair R Fernie, Jingjun Ruan, Kaixuan Zhang, Meiliang Zhou","doi":"10.1111/tpj.17119","DOIUrl":null,"url":null,"abstract":"<p><p>Tartary buckwheat is known for its ability to adapt to intricate growth conditions and to possess robust stress-resistant properties. Nevertheless, it remains vulnerable to drought stress, which can lead to reduced crop yield. To identify potential genes involved in drought resistance, a genome-wide association study on drought tolerance in Tartary buckwheat germplasm was conducted. A gene encoding pectin methylesterase inhibitors protein (FtPMEI13) was identified, which is not only associated with drought tolerance but also showed induction during drought stress and abscisic acid (ABA) treatment. Further analysis revealed that overexpression of FtPMEI13 leads to improved drought tolerance by altering the activities of antioxidant enzymes and the levels of osmotically active metabolites. Additionally, FtPMEI13 interacts with pectin methylesterase (PME) and inhibits PME activity in response to drought stress. Our results suggest that FtPMEI13 may inhibit the activity of FtPME44/FtPME61, thereby affecting pectin methylesterification in the cell wall and modulating stomatal closure in response to drought stress. Yeast one-hybrid, dual-luciferase assays, and electrophoretic mobility shift assays demonstrated that an ABA-responsive transcription factor FtbZIP46, could bind to the FtPMEI13 promoter, enhancing FtPMEI13 expression. Further analysis indicated that Tartary buckwheat accessions with the genotype resulting in higher FtPMEI13 and FtbZIP46 expression exhibited higher drought tolerance compared to the others. This suggests that this genotype has potential for application in Tartary buckwheat breeding. Furthermore, the natural variation of FtPMEI13 was responsible for decreased drought tolerance during Tartary buckwheat domestication. Taken together, these results provide basic support for Tartary buckwheat breeding for drought tolerance.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/tpj.17119","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Tartary buckwheat is known for its ability to adapt to intricate growth conditions and to possess robust stress-resistant properties. Nevertheless, it remains vulnerable to drought stress, which can lead to reduced crop yield. To identify potential genes involved in drought resistance, a genome-wide association study on drought tolerance in Tartary buckwheat germplasm was conducted. A gene encoding pectin methylesterase inhibitors protein (FtPMEI13) was identified, which is not only associated with drought tolerance but also showed induction during drought stress and abscisic acid (ABA) treatment. Further analysis revealed that overexpression of FtPMEI13 leads to improved drought tolerance by altering the activities of antioxidant enzymes and the levels of osmotically active metabolites. Additionally, FtPMEI13 interacts with pectin methylesterase (PME) and inhibits PME activity in response to drought stress. Our results suggest that FtPMEI13 may inhibit the activity of FtPME44/FtPME61, thereby affecting pectin methylesterification in the cell wall and modulating stomatal closure in response to drought stress. Yeast one-hybrid, dual-luciferase assays, and electrophoretic mobility shift assays demonstrated that an ABA-responsive transcription factor FtbZIP46, could bind to the FtPMEI13 promoter, enhancing FtPMEI13 expression. Further analysis indicated that Tartary buckwheat accessions with the genotype resulting in higher FtPMEI13 and FtbZIP46 expression exhibited higher drought tolerance compared to the others. This suggests that this genotype has potential for application in Tartary buckwheat breeding. Furthermore, the natural variation of FtPMEI13 was responsible for decreased drought tolerance during Tartary buckwheat domestication. Taken together, these results provide basic support for Tartary buckwheat breeding for drought tolerance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全基因组关联研究发现 FtPMEI13 基因赋予鞑靼荞麦抗旱性。
鞑靼荞麦以其适应复杂生长条件的能力和强大的抗逆性而著称。然而,它仍然很容易受到干旱胁迫的影响,从而导致作物减产。为了确定参与抗旱的潜在基因,研究人员对鞑靼荞麦种质的抗旱性进行了全基因组关联研究。研究发现了一个编码果胶甲基酯酶抑制蛋白(FtPMEI13)的基因,该基因不仅与抗旱性有关,而且在干旱胁迫和脱落酸(ABA)处理过程中显示出诱导作用。进一步分析表明,过表达 FtPMEI13 可通过改变抗氧化酶的活性和渗透活性代谢物的水平来提高耐旱性。此外,FtPMEI13 与果胶甲基酯酶(PME)相互作用,抑制 PME 在干旱胁迫下的活性。我们的研究结果表明,FtPMEI13 可能会抑制 FtPME44/FtPME61 的活性,从而影响细胞壁中果胶的甲基化,并调节干旱胁迫下的气孔关闭。酵母单杂交、双荧光素酶测定和电泳迁移测定表明,ABA响应转录因子FtbZIP46能与FtPMEI13启动子结合,从而增强FtPMEI13的表达。进一步的分析表明,FtPMEI13 和 FtbZIP46 表达量较高的基因型的鞑靼荞麦品种与其他品种相比具有更高的耐旱性。这表明该基因型在鞑靼荞麦育种中具有应用潜力。此外,在鞑靼荞麦驯化过程中,FtPMEI13的自然变异是导致耐旱性降低的原因。综上所述,这些结果为鞑靼荞麦的抗旱育种提供了基本支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Plant Journal
The Plant Journal 生物-植物科学
CiteScore
13.10
自引率
4.20%
发文量
415
审稿时长
2.3 months
期刊介绍: Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community. Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.
期刊最新文献
Molecular hydrogen positively influences root gravitropism involving auxin signaling and starch accumulation. Regulation of lignin biosynthesis by GhCAD37 affects fiber quality and anther vitality in upland cotton. The landscape of Arabidopsis tRNA aminoacylation. LcASR enhances tolerance to abiotic stress in Leymus chinensis and Arabidopsis thaliana by improving photosynthetic performance. The C2H2-type zinc finger transcription factor ZmDi19-7 regulates plant height and organ size by promoting cell size in maize.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1