{"title":"MiR-142-5p mediated Nrf2 dysregulation in gestational diabetes mellitus and its impact on placental angiogenesis","authors":"","doi":"10.1016/j.placenta.2024.10.021","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>Gestational diabetes mellitus (GDM) presents significant risks during pregnancy, including adverse perinatal outcomes and placental dysfunction. Impaired angiogenesis, involving crucial factors like Vascular Endothelial Growth Factor (VEGF), contributes to these complications. The Nrf2/Keap1 pathway, crucial for vascular redox homeostasis, has been linked to GDM-associated angiogenesis dysregulation.</div></div><div><h3>Methods</h3><div>This study aimed to investigate the molecular mechanisms underlying placental Nrf2 regulation, focusing on angiomiRs, key regulators of angiogenesis in GDM. Computational analysis identified miR-142-5p targeting Nrf2 mRNA. Expression levels of miR-142-5p were assessed in GDM placenta and correlated with Nrf2 expression. Experimental validation utilized human trophoblastic cell lines (BeWo) exposed to hyperglycemic conditions, assessing the effects of anti-miR-142 transfection on Nrf2 expression and angiogenic marker levels.</div></div><div><h3>Results</h3><div>miR-142-5p expression was significantly downregulated in GDM placenta, correlating positively with Nrf2 expression. In BeWo cells exposed to hyperglycemia, anti-miR-142 transfection notably increased Nrf2 expression alongside angiogenic marker levels, confirming the computational predictions.</div></div><div><h3>Discussion</h3><div>Our findings highlight the pivotal role of miRNAs in GDM-associated impaired angiogenesis by modulating Nrf2 expression. Understanding these molecular mechanisms provides insights into potential therapeutic targets for improving pregnancy outcomes in GDM cases.</div></div>","PeriodicalId":20203,"journal":{"name":"Placenta","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Placenta","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143400424006933","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Gestational diabetes mellitus (GDM) presents significant risks during pregnancy, including adverse perinatal outcomes and placental dysfunction. Impaired angiogenesis, involving crucial factors like Vascular Endothelial Growth Factor (VEGF), contributes to these complications. The Nrf2/Keap1 pathway, crucial for vascular redox homeostasis, has been linked to GDM-associated angiogenesis dysregulation.
Methods
This study aimed to investigate the molecular mechanisms underlying placental Nrf2 regulation, focusing on angiomiRs, key regulators of angiogenesis in GDM. Computational analysis identified miR-142-5p targeting Nrf2 mRNA. Expression levels of miR-142-5p were assessed in GDM placenta and correlated with Nrf2 expression. Experimental validation utilized human trophoblastic cell lines (BeWo) exposed to hyperglycemic conditions, assessing the effects of anti-miR-142 transfection on Nrf2 expression and angiogenic marker levels.
Results
miR-142-5p expression was significantly downregulated in GDM placenta, correlating positively with Nrf2 expression. In BeWo cells exposed to hyperglycemia, anti-miR-142 transfection notably increased Nrf2 expression alongside angiogenic marker levels, confirming the computational predictions.
Discussion
Our findings highlight the pivotal role of miRNAs in GDM-associated impaired angiogenesis by modulating Nrf2 expression. Understanding these molecular mechanisms provides insights into potential therapeutic targets for improving pregnancy outcomes in GDM cases.
期刊介绍:
Placenta publishes high-quality original articles and invited topical reviews on all aspects of human and animal placentation, and the interactions between the mother, the placenta and fetal development. Topics covered include evolution, development, genetics and epigenetics, stem cells, metabolism, transport, immunology, pathology, pharmacology, cell and molecular biology, and developmental programming. The Editors welcome studies on implantation and the endometrium, comparative placentation, the uterine and umbilical circulations, the relationship between fetal and placental development, clinical aspects of altered placental development or function, the placental membranes, the influence of paternal factors on placental development or function, and the assessment of biomarkers of placental disorders.