Sajeth Dinakaran, Sima Qutaina, Haitian Zhao, Yuefeng Tang, Zhimin Wang, Santiago Ruiz, Aya Nomura-Kitabayashi, Christine N. Metz, Helen M. Arthur, Stryder M. Meadows, Lionel Blanc, Marie E. Faughnan, Philippe Marambaud
{"title":"CDK6-mediated endothelial cell cycle acceleration drives arteriovenous malformations in hereditary hemorrhagic telangiectasia","authors":"Sajeth Dinakaran, Sima Qutaina, Haitian Zhao, Yuefeng Tang, Zhimin Wang, Santiago Ruiz, Aya Nomura-Kitabayashi, Christine N. Metz, Helen M. Arthur, Stryder M. Meadows, Lionel Blanc, Marie E. Faughnan, Philippe Marambaud","doi":"10.1038/s44161-024-00550-9","DOIUrl":null,"url":null,"abstract":"Increased endothelial cell proliferation is a hallmark of arteriovenous malformations (AVMs) in hereditary hemorrhagic telangiectasia (HHT). Here, we report a cyclin-dependent kinase 6 (CDK6)-driven mechanism of cell cycle deregulation involved in endothelial cell proliferation and HHT pathology. Specifically, endothelial cells from the livers of HHT mice bypassed the G1/S checkpoint and progressed through the cell cycle at an accelerated pace. Phosphorylated retinoblastoma (pRB1)—a marker of G1/S transition through the restriction point—accumulated in endothelial cells from retinal AVMs of HHT mice and endothelial cells from skin telangiectasia samples from HHT patients. Mechanistically, inhibition of activin receptor-like kinase 1 signaling increased key restriction point mediators, and treatment with the CDK4/6 inhibitors palbociclib or ribociclib blocked increases in pRB1 and retinal AVMs in HHT mice. Palbociclib also improved vascular pathology in the brain and liver, and slowed cell cycle progression in endothelial cells and endothelial cell proliferation. Endothelial cell-specific deletion of CDK6 was sufficient to protect HHT mice from AVM pathology. Thus, clinically approved CDK4/6 inhibitors might have the potential to be repurposed for HHT. Dinakaran et al. show that arteriovenous malformations in hereditary hemorrhagic telangiectasia are caused by CDK6-mediated cell cycle acceleration in response to BMP9/BMP10 inhibition and that CDK4/6 inhibitors can prevent the development of the disease.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"3 11","pages":"1301-1317"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cardiovascular research","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44161-024-00550-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Increased endothelial cell proliferation is a hallmark of arteriovenous malformations (AVMs) in hereditary hemorrhagic telangiectasia (HHT). Here, we report a cyclin-dependent kinase 6 (CDK6)-driven mechanism of cell cycle deregulation involved in endothelial cell proliferation and HHT pathology. Specifically, endothelial cells from the livers of HHT mice bypassed the G1/S checkpoint and progressed through the cell cycle at an accelerated pace. Phosphorylated retinoblastoma (pRB1)—a marker of G1/S transition through the restriction point—accumulated in endothelial cells from retinal AVMs of HHT mice and endothelial cells from skin telangiectasia samples from HHT patients. Mechanistically, inhibition of activin receptor-like kinase 1 signaling increased key restriction point mediators, and treatment with the CDK4/6 inhibitors palbociclib or ribociclib blocked increases in pRB1 and retinal AVMs in HHT mice. Palbociclib also improved vascular pathology in the brain and liver, and slowed cell cycle progression in endothelial cells and endothelial cell proliferation. Endothelial cell-specific deletion of CDK6 was sufficient to protect HHT mice from AVM pathology. Thus, clinically approved CDK4/6 inhibitors might have the potential to be repurposed for HHT. Dinakaran et al. show that arteriovenous malformations in hereditary hemorrhagic telangiectasia are caused by CDK6-mediated cell cycle acceleration in response to BMP9/BMP10 inhibition and that CDK4/6 inhibitors can prevent the development of the disease.