A leadless power transfer and wireless telemetry solutions for an endovascular electrocorticography.

Zhangyu Xu, Majid Khazaee, Nhan Duy Truong, Deniel Havenga, Armin Nikpour, Arman Ahnood, Omid Kavehei
{"title":"A leadless power transfer and wireless telemetry solutions for an endovascular electrocorticography.","authors":"Zhangyu Xu, Majid Khazaee, Nhan Duy Truong, Deniel Havenga, Armin Nikpour, Arman Ahnood, Omid Kavehei","doi":"10.1088/1741-2552/ad8dfe","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Endovascular brain-computer interfaces (eBCIs) offer a minimally invasive way to connect the brain to external devices, merging neuroscience, engineering, and medical technology. Currently, solutions for endovascular electrocorticography (ECoG) include a stent in the brain with sensing electrodes, a chest implant to accommodate electronic components to provide power and data telemetry, and a long (tens of centimeters) cable travel through vessels with a set of wires in between. Removing this long cable is the key to the clinical viability of eBCIS as it carries risks and limitations, especially for patients with fragile vasculature.<i>Approach</i>. This work introduces a wireless and leadless telemetry and power transfer solution for ECoG. The proposed solution includes an optical telemetry module and a focused ultrasound (FUS) power transfer system. The proposed system can be miniaturised to fit in an endovascular stent, removing the need for long, intrusive cables.<i>Main results</i>. The optical telemetry achieves data transmission speeds of over 2 Mbit/s, capable of supporting 41 ECoG channels at a 2 kHz sampling rate with 24-bit resolution. The FUS power transfer system delivers up to 10 mW of power to the implant through the scalp(6 mm), skull(10 mm), and subdural space(5 mm), adhering to safety limits. Testing on bovine tissue (10 mm thick bone, 7 mm thick skin) confirmed the system's efficacy.<i>Significance</i>. This leadless and wireless solution eliminates the need for long cables and auxiliary implants, potentially reducing complications and enhancing the clinical applicability of eBCIs. The proposed system represents a step forward in enabling safer and more effective ECoG for a broader range of patients.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/ad8dfe","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective. Endovascular brain-computer interfaces (eBCIs) offer a minimally invasive way to connect the brain to external devices, merging neuroscience, engineering, and medical technology. Currently, solutions for endovascular electrocorticography (ECoG) include a stent in the brain with sensing electrodes, a chest implant to accommodate electronic components to provide power and data telemetry, and a long (tens of centimeters) cable travel through vessels with a set of wires in between. Removing this long cable is the key to the clinical viability of eBCIS as it carries risks and limitations, especially for patients with fragile vasculature.Approach. This work introduces a wireless and leadless telemetry and power transfer solution for ECoG. The proposed solution includes an optical telemetry module and a focused ultrasound (FUS) power transfer system. The proposed system can be miniaturised to fit in an endovascular stent, removing the need for long, intrusive cables.Main results. The optical telemetry achieves data transmission speeds of over 2 Mbit/s, capable of supporting 41 ECoG channels at a 2 kHz sampling rate with 24-bit resolution. The FUS power transfer system delivers up to 10 mW of power to the implant through the scalp(6 mm), skull(10 mm), and subdural space(5 mm), adhering to safety limits. Testing on bovine tissue (10 mm thick bone, 7 mm thick skin) confirmed the system's efficacy.Significance. This leadless and wireless solution eliminates the need for long cables and auxiliary implants, potentially reducing complications and enhancing the clinical applicability of eBCIs. The proposed system represents a step forward in enabling safer and more effective ECoG for a broader range of patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于血管内皮层电图的无引线电力传输和无线遥测解决方案。
目的:血管内脑-计算机接口(eBCI)提供了一种将大脑与外部设备连接起来的微创方法,融合了神经科学、工程学和医学技术。目前,血管内皮层电图(ECoG)的解决方案包括:在大脑中植入一个带有传感电极的支架,在胸部植入一个容纳电子元件的植入物,以提供电源和数据遥测,以及在血管中穿行一条长电缆(数十厘米),电缆之间有一组导线。移除这条长线是 eBCIS 临床可行性的关键,因为它存在风险和局限性,尤其是对血管脆弱的患者而言:这项工作为心电图引入了一种无线、无导线遥测和电力传输解决方案。拟议的解决方案包括一个光学遥测模块和一个聚焦超声(FUS)功率传输系统。提议的系统可以小型化,以便安装在血管内支架中,无需使用长的侵入性电缆:主要成果:光学遥测的数据传输速度超过 2 Mbit/s,能够支持 41 个心电图通道,采样率为 2 kHz,分辨率为 24 位。FUS 功率传输系统通过头皮(6 毫米)、颅骨(10 毫米)和硬膜下间隙(5 毫米)向植入体提供高达 10 mW 的功率,符合安全限制。对牛组织(骨厚 10 毫米,皮厚 7 毫米)的测试证实了该系统的功效:意义:这一无导线无线解决方案无需使用长电缆和辅助植入物,可减少并发症,提高电子脑干成像的临床适用性。该系统的问世标志着我们在为更多患者提供更安全、更有效的心电图方面又向前迈进了一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A leadless power transfer and wireless telemetry solutions for an endovascular electrocorticography. SoftBoMI: a non-invasive wearable body-machine interface for mapping movement of shoulder to commands. Anchoring temporal convolutional networks for epileptic seizure prediction. Wide-angle simulated artificial vision enhances spatial navigation and object interaction in a naturalistic environment. High-quality multimodal MRI with simultaneous EEG using conductive ink and polymer-thick film nets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1