Talin and vinculin combine their activities to trigger actin assembly

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-11-03 DOI:10.1038/s41467-024-53859-1
Hong Wang, Rayan Said, Clémence Nguyen-Vigouroux, Véronique Henriot, Peter Gebhardt, Julien Pernier, Robert Grosse, Christophe Le Clainche
{"title":"Talin and vinculin combine their activities to trigger actin assembly","authors":"Hong Wang, Rayan Said, Clémence Nguyen-Vigouroux, Véronique Henriot, Peter Gebhardt, Julien Pernier, Robert Grosse, Christophe Le Clainche","doi":"10.1038/s41467-024-53859-1","DOIUrl":null,"url":null,"abstract":"<p>Focal adhesions (FAs) strengthen their link with the actin cytoskeleton to resist force. Talin-vinculin association could reinforce actin anchoring to FAs by controlling actin polymerization. However, the actin polymerization activity of the talin-vinculin complex is not known because it requires the reconstitution of the mechanical and biochemical activation steps that control the association of talin and vinculin. By combining kinetic and binding assays with single actin filament observations in TIRF microscopy, we show that the association of talin and vinculin mutants, mimicking mechanically stretched talin and activated vinculin, triggers a sequential mechanism in which filaments are nucleated, capped and released to elongate. In agreement with these observations, FRAP experiments in cells co-expressing the same constitutive mutants of talin and vinculin revealed accelerated growth of stress fibers. Our findings suggest a versatile mechanism for the regulation of actin assembly in FAs subjected to various combinations of biochemical and mechanical cues.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53859-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Focal adhesions (FAs) strengthen their link with the actin cytoskeleton to resist force. Talin-vinculin association could reinforce actin anchoring to FAs by controlling actin polymerization. However, the actin polymerization activity of the talin-vinculin complex is not known because it requires the reconstitution of the mechanical and biochemical activation steps that control the association of talin and vinculin. By combining kinetic and binding assays with single actin filament observations in TIRF microscopy, we show that the association of talin and vinculin mutants, mimicking mechanically stretched talin and activated vinculin, triggers a sequential mechanism in which filaments are nucleated, capped and released to elongate. In agreement with these observations, FRAP experiments in cells co-expressing the same constitutive mutants of talin and vinculin revealed accelerated growth of stress fibers. Our findings suggest a versatile mechanism for the regulation of actin assembly in FAs subjected to various combinations of biochemical and mechanical cues.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Talin 和 vinculin 结合起来触发肌动蛋白组装
病灶粘附(FA)可加强其与肌动蛋白细胞骨架的联系以抵抗外力。Talin-vinculin 结合可通过控制肌动蛋白聚合来加强肌动蛋白对 FA 的锚定。然而,目前还不清楚塔林-长春质蛋白复合物的肌动蛋白聚合活性,因为这需要重建控制塔林和长春质蛋白结合的机械和生化激活步骤。通过将动力学和结合测定与 TIRF 显微镜下的单个肌动蛋白丝观察相结合,我们发现,模仿机械拉伸的 talin 和活化的 vinculin 突变体的 talin 和 vinculin 的结合触发了一个有序的机制,在这个机制中,肌动蛋白丝被成核、封盖和释放以伸长。与这些观察结果一致的是,在共同表达相同组成型突变体的细胞中进行的 FRAP 实验显示,应力纤维的生长速度加快。我们的研究结果表明,在各种生化和机械因素的作用下,FAs 中肌动蛋白组装的调节机制是多变的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
High-performance photon-driven DC motor system The Arabidopsis receptor-like kinase WAKL4 limits cadmium uptake via phosphorylation and degradation of NRAMP1 transporter Unveiling the autocatalytic growth of Li2S crystals at the solid-liquid interface in lithium-sulfur batteries A Catalogue of Structural Variation across Ancestrally Diverse Asian Genomes A single-photon emitter coupled to a phononic-crystal resonator in the resolved-sideband regime
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1