Yujie Shang, Di Han, Kun Deng, Huifang Zhou, Minghua Wu
{"title":"Quercetin Boosts Pulsatile Gonadotropin-Releasing Hormone Release to Improve Luteal Function via Inhibiting NF-κB/NLRP3-Mediated Neuron Pyroptosis.","authors":"Yujie Shang, Di Han, Kun Deng, Huifang Zhou, Minghua Wu","doi":"10.1002/mnfr.202400649","DOIUrl":null,"url":null,"abstract":"<p><strong>Scope: </strong>Luteal phase deficiency (LPD) is the main cause of infertility without an effective cure. Quercetin (QUE) is a bioactive flavonoid with antioxidant properties, while its role in treating LPD remains unclear. This study aims to investigate the therapeutic effects of QUE on infertility and menstrual disorders induced by LPD, thus further exploring the underlying mechanism.</p><p><strong>Methods and results: </strong>Mifepristone-induced rats are used to explore the protective effects of QUE against LPD. QUE stimulates the spontaneous secretion of progesterone to improve luteal function and endometrial receptivity in LPD rats by activating the kisspeptin/GPR54 system to facilitate the gonadotropin-releasing hormone (GnRH) pulsatility. Bioinformatics analysis reveals that the core mechanism of QUE in treating LPD is to attenuate the GnRH neuron pyroptosis by inhibiting the NF-κB pathway, which is further verified in LPD rats and lipopolysaccharide (LPS)-treated GT1-7, as QUE significantly reduces the expression of key factors concerning NF-κB pathway and NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome.</p><p><strong>Conclusion: </strong>This study first proposes that neuron pyroptosis-induced GnRH pulsatility disruption accounts for the pathogenesis of LPD, and QUE facilitates the pulse secretion of GnRH to boost the spontaneous progesterone secretion by inhibiting NF-κB/NLRP3-mediated neuron pyroptosis, which provides a new therapeutic target and strategy for LPD.</p>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Nutrition & Food Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/mnfr.202400649","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Scope: Luteal phase deficiency (LPD) is the main cause of infertility without an effective cure. Quercetin (QUE) is a bioactive flavonoid with antioxidant properties, while its role in treating LPD remains unclear. This study aims to investigate the therapeutic effects of QUE on infertility and menstrual disorders induced by LPD, thus further exploring the underlying mechanism.
Methods and results: Mifepristone-induced rats are used to explore the protective effects of QUE against LPD. QUE stimulates the spontaneous secretion of progesterone to improve luteal function and endometrial receptivity in LPD rats by activating the kisspeptin/GPR54 system to facilitate the gonadotropin-releasing hormone (GnRH) pulsatility. Bioinformatics analysis reveals that the core mechanism of QUE in treating LPD is to attenuate the GnRH neuron pyroptosis by inhibiting the NF-κB pathway, which is further verified in LPD rats and lipopolysaccharide (LPS)-treated GT1-7, as QUE significantly reduces the expression of key factors concerning NF-κB pathway and NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome.
Conclusion: This study first proposes that neuron pyroptosis-induced GnRH pulsatility disruption accounts for the pathogenesis of LPD, and QUE facilitates the pulse secretion of GnRH to boost the spontaneous progesterone secretion by inhibiting NF-κB/NLRP3-mediated neuron pyroptosis, which provides a new therapeutic target and strategy for LPD.
期刊介绍:
Molecular Nutrition & Food Research is a primary research journal devoted to health, safety and all aspects of molecular nutrition such as nutritional biochemistry, nutrigenomics and metabolomics aiming to link the information arising from related disciplines:
Bioactivity: Nutritional and medical effects of food constituents including bioavailability and kinetics.
Immunology: Understanding the interactions of food and the immune system.
Microbiology: Food spoilage, food pathogens, chemical and physical approaches of fermented foods and novel microbial processes.
Chemistry: Isolation and analysis of bioactive food ingredients while considering environmental aspects.