Identification and Biological Characterization of a Novel NRF2 Activator Molecule Released From the Membranes of Heat-Treated Bifidobacterium breve NCC 2950
Francis Foata, Stéphane Duboux, Sébastien Herzig, Federico Sizzano, Jonathan Thevenet, Philippe Guy, Serge Rezzi, Sylviane Métairon, Bertrand Bourqui, Ivan Montoliu, Annick Mercenier, Nabil Bosco
{"title":"Identification and Biological Characterization of a Novel NRF2 Activator Molecule Released From the Membranes of Heat-Treated Bifidobacterium breve NCC 2950","authors":"Francis Foata, Stéphane Duboux, Sébastien Herzig, Federico Sizzano, Jonathan Thevenet, Philippe Guy, Serge Rezzi, Sylviane Métairon, Bertrand Bourqui, Ivan Montoliu, Annick Mercenier, Nabil Bosco","doi":"10.1002/mnfr.202400770","DOIUrl":null,"url":null,"abstract":"Postbiotics are defined as a “preparation of inanimate microorganisms and/or their components that confers a health benefit on the host”. They represent an attractive alternative to probiotics as they could be used in a broader range of applications, where probiotic stability is limiting. To date knowledge on the mechanism of action of inanimate microorganisms is relatively scarce. In this study, we investigated the impact of heat treatment on NRF2 activation by several candidate probiotic strains from the Nestlé Culture Collection (NCC), including species encompassed in the <i>Bifidobacterium</i> genus and the <i>Lactobacillaceae</i> family. We identified an NRF2-activating bioactive molecule, 4-oxo-2-pentenoic acid (OPA), specifically released during heat treatment of <i>Bifidobacterium breve</i> NCC 2950. We explored cellular pathways that can be modulated by OPA, such as antiinflammatory signals and organismal defense against oxidative stress in zebrafish in vivo. We identified a new <i>B. breve</i> NCC 2950-derived postbiotic that, based on the mode of action, may have important applications for nutritional strategies to benefit human health.","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"64 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Nutrition & Food Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/mnfr.202400770","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Postbiotics are defined as a “preparation of inanimate microorganisms and/or their components that confers a health benefit on the host”. They represent an attractive alternative to probiotics as they could be used in a broader range of applications, where probiotic stability is limiting. To date knowledge on the mechanism of action of inanimate microorganisms is relatively scarce. In this study, we investigated the impact of heat treatment on NRF2 activation by several candidate probiotic strains from the Nestlé Culture Collection (NCC), including species encompassed in the Bifidobacterium genus and the Lactobacillaceae family. We identified an NRF2-activating bioactive molecule, 4-oxo-2-pentenoic acid (OPA), specifically released during heat treatment of Bifidobacterium breve NCC 2950. We explored cellular pathways that can be modulated by OPA, such as antiinflammatory signals and organismal defense against oxidative stress in zebrafish in vivo. We identified a new B. breve NCC 2950-derived postbiotic that, based on the mode of action, may have important applications for nutritional strategies to benefit human health.
期刊介绍:
Molecular Nutrition & Food Research is a primary research journal devoted to health, safety and all aspects of molecular nutrition such as nutritional biochemistry, nutrigenomics and metabolomics aiming to link the information arising from related disciplines:
Bioactivity: Nutritional and medical effects of food constituents including bioavailability and kinetics.
Immunology: Understanding the interactions of food and the immune system.
Microbiology: Food spoilage, food pathogens, chemical and physical approaches of fermented foods and novel microbial processes.
Chemistry: Isolation and analysis of bioactive food ingredients while considering environmental aspects.