Paul E Pace, Ling Fu, Mark B Hampton, Christine C Winterbourn
{"title":"Redox proteomic analysis of H<sub>2</sub>O<sub>2</sub> -treated Jurkat cells and effects of bicarbonate and knockout of peroxiredoxins 1 and 2.","authors":"Paul E Pace, Ling Fu, Mark B Hampton, Christine C Winterbourn","doi":"10.1016/j.freeradbiomed.2024.10.314","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidation of thiol proteins and redox signaling occur in cells exposed to H<sub>2</sub>O<sub>2</sub> but mechanisms are unclear. We used redox proteomics to seek evidence of oxidation of specific proteins either by a mechanism involving reaction of H<sub>2</sub>O<sub>2</sub> with CO<sub>2</sub>/bicarbonate to give the more reactive peroxymonocarbonate, or via a relay involving peroxiredoxins (Prdxs). Changes in oxidation state of specific Cys-SH residues on treating Jurkat T lymphoma cells with H<sub>2</sub>O<sub>2</sub> were measured by isotopically labeling reduced thiols and analysis by mass spectrometry. The effects of bicarbonate and of knocking out either Prdx1 or Prdx2 were examined. Approximately 14,000 Cys-peptides were detected, of which ∼1 % underwent 2-10 fold loss in thiol content with H<sub>2</sub>O<sub>2</sub>. Those showing the most oxidation were not affected by the presence of bicarbonate or knockout of either Prdx. Consistent with previous evidence that bicarbonate potentiates inactivation of glyceraldehyde-3-phosphate dehydrogenase, the GAPDH active site Cys residues were significantly more sensitive to H<sub>2</sub>O<sub>2</sub> when bicarbonate was present. Several other proteins were identified as promising candidates for further investigation. Although we identified some potential protein candidates for Prdx-dependent oxidation, most of the significant differences between KO and WT cells were seen in proteins for which H<sub>2</sub>O<sub>2</sub> unexpectedly increased their CysSH content over untreated cells. We conclude that facilitation of protein oxidation by bicarbonate or Prdx-mediated relays is restricted to a small number of proteins and is insufficient to explain the majority of the oxidation of the cell thiols that occured in response to H<sub>2</sub>O<sub>2</sub>.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":" ","pages":"221-232"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.freeradbiomed.2024.10.314","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oxidation of thiol proteins and redox signaling occur in cells exposed to H2O2 but mechanisms are unclear. We used redox proteomics to seek evidence of oxidation of specific proteins either by a mechanism involving reaction of H2O2 with CO2/bicarbonate to give the more reactive peroxymonocarbonate, or via a relay involving peroxiredoxins (Prdxs). Changes in oxidation state of specific Cys-SH residues on treating Jurkat T lymphoma cells with H2O2 were measured by isotopically labeling reduced thiols and analysis by mass spectrometry. The effects of bicarbonate and of knocking out either Prdx1 or Prdx2 were examined. Approximately 14,000 Cys-peptides were detected, of which ∼1 % underwent 2-10 fold loss in thiol content with H2O2. Those showing the most oxidation were not affected by the presence of bicarbonate or knockout of either Prdx. Consistent with previous evidence that bicarbonate potentiates inactivation of glyceraldehyde-3-phosphate dehydrogenase, the GAPDH active site Cys residues were significantly more sensitive to H2O2 when bicarbonate was present. Several other proteins were identified as promising candidates for further investigation. Although we identified some potential protein candidates for Prdx-dependent oxidation, most of the significant differences between KO and WT cells were seen in proteins for which H2O2 unexpectedly increased their CysSH content over untreated cells. We conclude that facilitation of protein oxidation by bicarbonate or Prdx-mediated relays is restricted to a small number of proteins and is insufficient to explain the majority of the oxidation of the cell thiols that occured in response to H2O2.
期刊介绍:
Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.