Sung Hee Choi, Alicia Santin, Jay T Myers, Byung-Gyu Kim, Saada Eid, Suzanne L Tomchuck, Daniel T Kingsley, Alex Y Huang
{"title":"Piezo1 restrains proinflammatory response but is essential in T cell-mediated immunopathology.","authors":"Sung Hee Choi, Alicia Santin, Jay T Myers, Byung-Gyu Kim, Saada Eid, Suzanne L Tomchuck, Daniel T Kingsley, Alex Y Huang","doi":"10.1093/jleuko/qiae242","DOIUrl":null,"url":null,"abstract":"<p><p>Piezo1 is a mechanosensitive, nonselective Ca2+ channel which is broadly expressed in CD4+ T cells. Using lineage-specific Piezo1 knockout mice (Piezo1cKO), we show that loss of Piezo1 in CD4+ T cells significantly increased IFNγ and IL-17 production in vitro under TH1 and TH17 polarizing conditions, respectively. Despite their intrinsic proinflammatory phenotype, Piezo1cKO T cells are incapable of establishing disease in vivo in three separate adoptive transfer (AT) T cell-mediated inflammatory mouse models, including experimental autoimmune encephalomyelitis, inflammatory bowel disease (IBD), and graft versus-host disease. These phenomena coincided with a decreased effector memory (CD44hiCD62Llo) CD4+ T cell pool derived from donor Piezo1cKO T cells, an observation that is related to intrinsic T-cell fitness, as co-transfer IBD mouse model revealed a deficiency in the CD4+ effector memory population derived only from the naïve Piezo1cKO but not co-infused Piezo1WT CD4+ T cell source. Taken together, our results support Piezo1 as restraining proinflammatory T cell differentiation while contributing to the generation and persistence of the effector memory pool during CD4+ T cell-mediated immunopathology.</p>","PeriodicalId":16186,"journal":{"name":"Journal of Leukocyte Biology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Leukocyte Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jleuko/qiae242","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Piezo1 is a mechanosensitive, nonselective Ca2+ channel which is broadly expressed in CD4+ T cells. Using lineage-specific Piezo1 knockout mice (Piezo1cKO), we show that loss of Piezo1 in CD4+ T cells significantly increased IFNγ and IL-17 production in vitro under TH1 and TH17 polarizing conditions, respectively. Despite their intrinsic proinflammatory phenotype, Piezo1cKO T cells are incapable of establishing disease in vivo in three separate adoptive transfer (AT) T cell-mediated inflammatory mouse models, including experimental autoimmune encephalomyelitis, inflammatory bowel disease (IBD), and graft versus-host disease. These phenomena coincided with a decreased effector memory (CD44hiCD62Llo) CD4+ T cell pool derived from donor Piezo1cKO T cells, an observation that is related to intrinsic T-cell fitness, as co-transfer IBD mouse model revealed a deficiency in the CD4+ effector memory population derived only from the naïve Piezo1cKO but not co-infused Piezo1WT CD4+ T cell source. Taken together, our results support Piezo1 as restraining proinflammatory T cell differentiation while contributing to the generation and persistence of the effector memory pool during CD4+ T cell-mediated immunopathology.
期刊介绍:
JLB is a peer-reviewed, academic journal published by the Society for Leukocyte Biology for its members and the community of immunobiologists. The journal publishes papers devoted to the exploration of the cellular and molecular biology of granulocytes, mononuclear phagocytes, lymphocytes, NK cells, and other cells involved in host physiology and defense/resistance against disease. Since all cells in the body can directly or indirectly contribute to the maintenance of the integrity of the organism and restoration of homeostasis through repair, JLB also considers articles involving epithelial, endothelial, fibroblastic, neural, and other somatic cell types participating in host defense. Studies covering pathophysiology, cell development, differentiation and trafficking; fundamental, translational and clinical immunology, inflammation, extracellular mediators and effector molecules; receptors, signal transduction and genes are considered relevant. Research articles and reviews that provide a novel understanding in any of these fields are given priority as well as technical advances related to leukocyte research methods.