Discovering a novel dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) inhibitor and its impact on tau phosphorylation and amyloid-β formation.

IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Enzyme Inhibition and Medicinal Chemistry Pub Date : 2024-12-01 Epub Date: 2024-11-04 DOI:10.1080/14756366.2024.2418470
Huang-Ju Tu, Min-Wu Chao, Cheng-Chung Lee, Chao-Shiang Peng, Yi-Wen Wu, Tony Eight Lin, Yu-Wei Chang, Shih-Chung Yen, Kai-Cheng Hsu, Shiow-Lin Pan, Wei-Chun HuangFu
{"title":"Discovering a novel dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) inhibitor and its impact on tau phosphorylation and amyloid-β formation.","authors":"Huang-Ju Tu, Min-Wu Chao, Cheng-Chung Lee, Chao-Shiang Peng, Yi-Wen Wu, Tony Eight Lin, Yu-Wei Chang, Shih-Chung Yen, Kai-Cheng Hsu, Shiow-Lin Pan, Wei-Chun HuangFu","doi":"10.1080/14756366.2024.2418470","DOIUrl":null,"url":null,"abstract":"<p><p>Dual-specificity tyrosine-regulated kinase 1 A (DYRK1A) is crucial in neurogenesis, synaptogenesis, and neuronal functions. Its dysregulation is linked to neurodegenerative disorders like Down syndrome and Alzheimer's disease. Although the development of DYRK1A inhibitors has significantly advanced in recent years, the selectivity of these drugs remains a critical challenge, potentially impeding further progress. In this study, we utilised structure-based virtual screening (SBVS) from NCI library to discover novel DYRK1A inhibitors. The top-ranked compounds were then validated through enzymatic assays to assess their efficacy towards DYRK1A. Among them, NSC361563 emerged as a potent and selective DYRK1A inhibitor. It was shown to decrease tau phosphorylation at multiple sites, thereby enhancing tubulin stability. Moreover, NSC361563 diminished the formation of amyloid β and offered neuroprotective benefits against amyloid β-induced toxicity. Our research highlights the critical role of selective DYRK1A inhibitors in treating neurodegenerative diseases and presents a promising starting point for the development of targeted therapies.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"39 1","pages":"2418470"},"PeriodicalIF":5.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536634/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enzyme Inhibition and Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14756366.2024.2418470","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Dual-specificity tyrosine-regulated kinase 1 A (DYRK1A) is crucial in neurogenesis, synaptogenesis, and neuronal functions. Its dysregulation is linked to neurodegenerative disorders like Down syndrome and Alzheimer's disease. Although the development of DYRK1A inhibitors has significantly advanced in recent years, the selectivity of these drugs remains a critical challenge, potentially impeding further progress. In this study, we utilised structure-based virtual screening (SBVS) from NCI library to discover novel DYRK1A inhibitors. The top-ranked compounds were then validated through enzymatic assays to assess their efficacy towards DYRK1A. Among them, NSC361563 emerged as a potent and selective DYRK1A inhibitor. It was shown to decrease tau phosphorylation at multiple sites, thereby enhancing tubulin stability. Moreover, NSC361563 diminished the formation of amyloid β and offered neuroprotective benefits against amyloid β-induced toxicity. Our research highlights the critical role of selective DYRK1A inhibitors in treating neurodegenerative diseases and presents a promising starting point for the development of targeted therapies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
发现新型双特异性酪氨酸磷酸化调节激酶 1A (DYRK1A) 抑制剂及其对 tau 磷酸化和淀粉样蛋白-β形成的影响
双特异性酪氨酸调控激酶 1 A(DYRK1A)在神经发生、突触生成和神经元功能中至关重要。它的失调与唐氏综合征和阿尔茨海默病等神经退行性疾病有关。尽管近年来 DYRK1A 抑制剂的开发取得了显著进展,但这些药物的选择性仍然是一个关键挑战,可能会阻碍进一步的研究进展。在这项研究中,我们利用基于结构的虚拟筛选(SBVS)从 NCI 库中发现了新型 DYRK1A 抑制剂。然后通过酶学实验验证了排名靠前的化合物,以评估它们对 DYRK1A 的疗效。其中,NSC361563 是一种强效且具有选择性的 DYRK1A 抑制剂。研究表明,它能降低多个位点的 tau 磷酸化,从而增强微管蛋白的稳定性。此外,NSC361563还能减少淀粉样β的形成,并对淀粉样β诱导的毒性提供神经保护作用。我们的研究强调了选择性 DYRK1A 抑制剂在治疗神经退行性疾病中的关键作用,并为开发靶向疗法提供了一个很有前景的起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
10.70%
发文量
195
审稿时长
4-8 weeks
期刊介绍: Journal of Enzyme Inhibition and Medicinal Chemistry publishes open access research on enzyme inhibitors, inhibitory processes, and agonist/antagonist receptor interactions in the development of medicinal and anti-cancer agents. Journal of Enzyme Inhibition and Medicinal Chemistry aims to provide an international and interdisciplinary platform for the latest findings in enzyme inhibition research. The journal’s focus includes current developments in: Enzymology; Cell biology; Chemical biology; Microbiology; Physiology; Pharmacology leading to drug design; Molecular recognition processes; Distribution and metabolism of biologically active compounds.
期刊最新文献
Structural comparison of substrate-binding pockets of serine β-lactamases in classes A, C, and D. The new thiazolidine-2,4-dione-based hybrids with promising antimycobacterial activity: design, synthesis, biological evaluation, and drug interaction analysis. Small molecules targeting the eubacterial β-sliding clamp discovered by combined in silico and in vitro screening approaches. Evaluation of N-alkyl isatins and indoles as acetylcholinesterase and butyrylcholinesterase inhibitors. Identification of putative allosteric inhibitors of BCKDK via virtual screening and biological evaluation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1