The new thiazolidine-2,4-dione-based hybrids with promising antimycobacterial activity: design, synthesis, biological evaluation, and drug interaction analysis.

IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Enzyme Inhibition and Medicinal Chemistry Pub Date : 2025-12-01 Epub Date: 2025-01-03 DOI:10.1080/14756366.2024.2442703
Nazar Trotsko, Agnieszka Głogowska, Barbara Kaproń, Katarzyna Kozieł, Ewa Augustynowicz-Kopeć, Agata Paneth
{"title":"The new thiazolidine-2,4-dione-based hybrids with promising antimycobacterial activity: design, synthesis, biological evaluation, and drug interaction analysis.","authors":"Nazar Trotsko, Agnieszka Głogowska, Barbara Kaproń, Katarzyna Kozieł, Ewa Augustynowicz-Kopeć, Agata Paneth","doi":"10.1080/14756366.2024.2442703","DOIUrl":null,"url":null,"abstract":"<p><p>The ever-increasing drug-resistant tuberculosis (TB) has invigorated the focus on the discovery and development of novel therapeutic agents and treatment options. Thiazolidinone-based compounds have shown good antitubercular properties <i>in vitro</i>. Here, we report the design and synthesis of a number of new derivatives inspired by the structure of thiazolidine-2,4-dione (TZD). The TZD-based hybrids with the thiosemicarbazone or the pyridinecarbohydrazone moiety were synthesised and their antimycobacterial activity was investigated against the reference H<sub>37</sub>Rv and two wild <i>Mycobacterium tuberculosis</i> (<i>Mtb</i>) strains. In further studies, a two-drug interaction analysis was also performed for assessing their synergism with the current first-line drugs used for the treatment of TB. It was found that some of the compounds showed high antimycobacterial activity with MICs (0.078-0.283 µM) and a synergistic effect with isoniazid or rifampicin, thereby demonstrating their potential as a promising scaffold for the development of novel coadjuvants for the effective treatment of TB.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2442703"},"PeriodicalIF":5.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enzyme Inhibition and Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14756366.2024.2442703","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The ever-increasing drug-resistant tuberculosis (TB) has invigorated the focus on the discovery and development of novel therapeutic agents and treatment options. Thiazolidinone-based compounds have shown good antitubercular properties in vitro. Here, we report the design and synthesis of a number of new derivatives inspired by the structure of thiazolidine-2,4-dione (TZD). The TZD-based hybrids with the thiosemicarbazone or the pyridinecarbohydrazone moiety were synthesised and their antimycobacterial activity was investigated against the reference H37Rv and two wild Mycobacterium tuberculosis (Mtb) strains. In further studies, a two-drug interaction analysis was also performed for assessing their synergism with the current first-line drugs used for the treatment of TB. It was found that some of the compounds showed high antimycobacterial activity with MICs (0.078-0.283 µM) and a synergistic effect with isoniazid or rifampicin, thereby demonstrating their potential as a promising scaffold for the development of novel coadjuvants for the effective treatment of TB.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有良好抑菌活性的新型噻唑烷-2,4-二酮基杂合体:设计、合成、生物学评价和药物相互作用分析。
不断增加的耐药结核病(TB)使人们更加重视发现和开发新的治疗药物和治疗方案。噻唑烷酮类化合物在体外表现出良好的抗结核性能。本文报道了以噻唑烷-2,4-二酮(TZD)的结构为灵感设计和合成了一些新的衍生物。合成了具有硫代氨基脲或吡啶碳腙片段的tzd基杂合体,并对参考菌株H37Rv和2株野生结核分枝杆菌(Mtb)进行了抑菌活性研究。在进一步的研究中,还进行了两种药物相互作用分析,以评估它们与目前用于治疗结核病的一线药物的协同作用。研究发现,其中一些化合物具有较高的抗微生物活性(0.078 ~ 0.283µM),并与异烟肼或利福平具有协同作用,从而显示了它们作为开发有效治疗结核病的新型辅助剂的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
10.70%
发文量
195
审稿时长
4-8 weeks
期刊介绍: Journal of Enzyme Inhibition and Medicinal Chemistry publishes open access research on enzyme inhibitors, inhibitory processes, and agonist/antagonist receptor interactions in the development of medicinal and anti-cancer agents. Journal of Enzyme Inhibition and Medicinal Chemistry aims to provide an international and interdisciplinary platform for the latest findings in enzyme inhibition research. The journal’s focus includes current developments in: Enzymology; Cell biology; Chemical biology; Microbiology; Physiology; Pharmacology leading to drug design; Molecular recognition processes; Distribution and metabolism of biologically active compounds.
期刊最新文献
Structural comparison of substrate-binding pockets of serine β-lactamases in classes A, C, and D. The new thiazolidine-2,4-dione-based hybrids with promising antimycobacterial activity: design, synthesis, biological evaluation, and drug interaction analysis. Small molecules targeting the eubacterial β-sliding clamp discovered by combined in silico and in vitro screening approaches. Indirubin-3'-oxime as a dual-action agent: mitigating heat-induced male infertility in Drosophila melanogaster and inhibiting soluble epoxide hydrolase. Chemical composition, antioxidant activities, and enzyme inhibitory effects of Lespedeza bicolour Turcz. essential oil.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1