{"title":"Understanding energy fluctuation during the transition state: The role of AbrB in Bacillus licheniformis.","authors":"Qing Zhang, Wanying Zhu, Shisi He, Jiaqi Lei, Liangsheng Xu, Shiying Hu, Zheng Zhang, Dongbo Cai, Shouwen Chen","doi":"10.1186/s12934-024-02572-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Limited research has been conducted on energy fluctuation during the transition state, despite the critical role of energy supply in microbial physiological metabolism.</p><p><strong>Results: </strong>This study aimed to investigate the regulatory function of transition state transcription factor AbrB on energy metabolism in Bacillus licheniformis WX-02. Firstly, the deletion of abrB was found to prolong the cell generation time, significantly reducing the intercellular ATP concentration and NADH/NAD<sup>+</sup> ratio at the early stage. Subsequently, various target genes and transcription factors regulated by AbrB were identified through in vitro verification assays. Specifically, AbrB was shown to modulate energy metabolism by directly regulating the expression of genes pyk and pgk in substrate-level phosphorylation, as well as genes narK and narGHIJ associated with nitrate respiration. In terms of oxidative phosphorylation, AbrB not only directly regulated ATP generation genes, including cyd, atpB, hmp, ndh, qoxA and sdhC, but also influenced the expression of NAD-dependent enzymes and intracellular NADH/NAD<sup>+</sup> ratio. Additionally, AbrB positively affected the expression of transcription factors CcpN, Fnr, Rex, and ResD involved in energy supply, while negatively affected the regulator CcpA. Overall, this study found that AbrB positively regulates both substrate-level phosphorylation and oxidative phosphorylation, while negatively regulating nitrate respiration.</p><p><strong>Conclusions: </strong>This study proposes a comprehensive regulatory network of AbrB on energy metabolism in Bacillus, expanding the understanding of regulatory mechanisms of AbrB and elucidating energy fluctuations during the transition state.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"23 1","pages":"296"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533420/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-024-02572-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Limited research has been conducted on energy fluctuation during the transition state, despite the critical role of energy supply in microbial physiological metabolism.
Results: This study aimed to investigate the regulatory function of transition state transcription factor AbrB on energy metabolism in Bacillus licheniformis WX-02. Firstly, the deletion of abrB was found to prolong the cell generation time, significantly reducing the intercellular ATP concentration and NADH/NAD+ ratio at the early stage. Subsequently, various target genes and transcription factors regulated by AbrB were identified through in vitro verification assays. Specifically, AbrB was shown to modulate energy metabolism by directly regulating the expression of genes pyk and pgk in substrate-level phosphorylation, as well as genes narK and narGHIJ associated with nitrate respiration. In terms of oxidative phosphorylation, AbrB not only directly regulated ATP generation genes, including cyd, atpB, hmp, ndh, qoxA and sdhC, but also influenced the expression of NAD-dependent enzymes and intracellular NADH/NAD+ ratio. Additionally, AbrB positively affected the expression of transcription factors CcpN, Fnr, Rex, and ResD involved in energy supply, while negatively affected the regulator CcpA. Overall, this study found that AbrB positively regulates both substrate-level phosphorylation and oxidative phosphorylation, while negatively regulating nitrate respiration.
Conclusions: This study proposes a comprehensive regulatory network of AbrB on energy metabolism in Bacillus, expanding the understanding of regulatory mechanisms of AbrB and elucidating energy fluctuations during the transition state.
期刊介绍:
Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology.
The journal is divided into the following editorial sections:
-Metabolic engineering
-Synthetic biology
-Whole-cell biocatalysis
-Microbial regulations
-Recombinant protein production/bioprocessing
-Production of natural compounds
-Systems biology of cell factories
-Microbial production processes
-Cell-free systems