Vishveshwaraiah C K, Kirankumar G B, Harshitha M, Madhu B K
{"title":"A Review on Silver Nanoparticles: Synthesis Approaches, Properties, Characterization and Applications.","authors":"Vishveshwaraiah C K, Kirankumar G B, Harshitha M, Madhu B K","doi":"10.2174/0122117385313643241010060814","DOIUrl":null,"url":null,"abstract":"<p><p>Nanoparticles are a significant topic due to their applications in various fields, including biology, optics, catalysis, pharmaceutics, health, agriculture, and industry, with biosynthesis processes being quick, easy, and environmentally friendly. Due to their applications across multiple industries, silver nanoparticles, or AgNPs, have become the most desired nanoparticles with the recent development of nanotechnology. The physical, chemical, and biological characteristics of AgNPs are being studied. These characteristics are crucial for limiting the hazards associated with silver nanoparticles while optimizing their potential applications in many fields. A higher degree of toxicity in both the environment and living things could arise from the increasing use of silver nanoparticles in the product. Silver nanoparticles find application in wound care, anti-infective therapy, food, pharmaceutical, and cosmetic industries. As antioxidant, antiviral, anticancer, antifungal, antiinflammatory, and microbiological agents, silver nanoparticles are widely used. Not only must the particles be nanoscale in order for silver nanoparticles to be present, but their production must also be simple and inexpensive to achieve. This paper aims to review the different methods of synthesis of silver nanoparticles, properties, characterization, and their applications. In specific, several chemical and green synthesis approaches for synthesising silver nanoparticles have been discussed. The morphology, size, thermal properties, toxicity properties, electrical properties, catalytic properties, and applications of silver nanoparticles are focused. The main focus is on the effective and efficient synthesis of pure silver nanoparticles and their potential applications.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385313643241010060814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Nanoparticles are a significant topic due to their applications in various fields, including biology, optics, catalysis, pharmaceutics, health, agriculture, and industry, with biosynthesis processes being quick, easy, and environmentally friendly. Due to their applications across multiple industries, silver nanoparticles, or AgNPs, have become the most desired nanoparticles with the recent development of nanotechnology. The physical, chemical, and biological characteristics of AgNPs are being studied. These characteristics are crucial for limiting the hazards associated with silver nanoparticles while optimizing their potential applications in many fields. A higher degree of toxicity in both the environment and living things could arise from the increasing use of silver nanoparticles in the product. Silver nanoparticles find application in wound care, anti-infective therapy, food, pharmaceutical, and cosmetic industries. As antioxidant, antiviral, anticancer, antifungal, antiinflammatory, and microbiological agents, silver nanoparticles are widely used. Not only must the particles be nanoscale in order for silver nanoparticles to be present, but their production must also be simple and inexpensive to achieve. This paper aims to review the different methods of synthesis of silver nanoparticles, properties, characterization, and their applications. In specific, several chemical and green synthesis approaches for synthesising silver nanoparticles have been discussed. The morphology, size, thermal properties, toxicity properties, electrical properties, catalytic properties, and applications of silver nanoparticles are focused. The main focus is on the effective and efficient synthesis of pure silver nanoparticles and their potential applications.
期刊介绍:
Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.