Unraveling the exceptional kinetics of Zn||organic batteries in hydrated deep eutectic solution

IF 13.1 1区 化学 Q1 Energy Journal of Energy Chemistry Pub Date : 2024-10-23 DOI:10.1016/j.jechem.2024.10.016
Duo Chen , Yuanhang Wang , Tengyu Yao , Hang Yang , Laifa Shen
{"title":"Unraveling the exceptional kinetics of Zn||organic batteries in hydrated deep eutectic solution","authors":"Duo Chen ,&nbsp;Yuanhang Wang ,&nbsp;Tengyu Yao ,&nbsp;Hang Yang ,&nbsp;Laifa Shen","doi":"10.1016/j.jechem.2024.10.016","DOIUrl":null,"url":null,"abstract":"<div><div>Intuitively, the solvation structure featuring stronger interacted sheath in deep eutectic solution (DES) electrolyte would result in sluggish interfacial charge transfer and intense polarization, which obstructs its practical application in emerging Zn based batteries. Unexpectedly, here we discover a Zn||organic battery with exceptional kinetics properties enabled by a hydrated DES electrolyte, which can render higher discharge capacity, smaller voltage polarization, and faster kinetics of charge transfer in comparison with conventional aqueous 3 M ZnCl<sub>2</sub> electrolyte, though its viscosity is two orders of magnitude higher than the latter. The improved kinetics of charge transfer and ion diffusion is demonstrated to originate from the local electron structure regulation of cathode in hydrated DES electrolyte. Furthermore, the DES electrolyte has also been shown to restrict parasitic reaction associated with active water by preferential urea-molecular adsorption on Zn surface and stronger water trapping in solvation structure, giving rise to long-term stable dendrite-free Zn plating/stripping. This work provides a new rationale for understanding electrochemical behaviors of organic cathodes in DES electrolyte, which is conducive to the development of high-performance Zn||organic batteries.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 570-577"},"PeriodicalIF":13.1000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624007174","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Intuitively, the solvation structure featuring stronger interacted sheath in deep eutectic solution (DES) electrolyte would result in sluggish interfacial charge transfer and intense polarization, which obstructs its practical application in emerging Zn based batteries. Unexpectedly, here we discover a Zn||organic battery with exceptional kinetics properties enabled by a hydrated DES electrolyte, which can render higher discharge capacity, smaller voltage polarization, and faster kinetics of charge transfer in comparison with conventional aqueous 3 M ZnCl2 electrolyte, though its viscosity is two orders of magnitude higher than the latter. The improved kinetics of charge transfer and ion diffusion is demonstrated to originate from the local electron structure regulation of cathode in hydrated DES electrolyte. Furthermore, the DES electrolyte has also been shown to restrict parasitic reaction associated with active water by preferential urea-molecular adsorption on Zn surface and stronger water trapping in solvation structure, giving rise to long-term stable dendrite-free Zn plating/stripping. This work provides a new rationale for understanding electrochemical behaviors of organic cathodes in DES electrolyte, which is conducive to the development of high-performance Zn||organic batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示锌||有机电池在水合深共晶溶液中的特殊动力学特性
直观地说,深共晶溶液(DES)电解质中具有较强相互作用鞘的溶解结构会导致界面电荷转移迟缓和极化严重,从而阻碍其在新兴锌基电池中的实际应用。与传统的 3 M ZnCl2 水溶液电解液相比,水合 DES 电解液具有更高的放电容量、更小的电压极化和更快的电荷转移动力学,尽管其粘度比后者高出两个数量级。电荷转移和离子扩散动力学的改善源于水合 DES 电解质中阴极局部电子结构的调节。此外,DES 电解质还通过在 Zn 表面优先吸附尿素分子和加强溶解结构中的水捕获作用,限制了与活性水相关的寄生反应,从而实现了长期稳定的无树枝状 Zn 镀层/剥离。这项工作为理解有机阴极在 DES 电解液中的电化学行为提供了新的理论依据,有利于开发高性能 Zn||有机电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
期刊最新文献
Catalytic production of high-energy-density spiro polycyclic jet fuel with biomass derivatives Metallized polymer current collector as “stress acceptor” for stable micron-sized silicon anodes Microdynamic modulation through Pt–O–Ni proton and electron “superhighway” for pH-universal hydrogen evolution High-areal-capacity and long-life sulfide-based all-solid-state lithium battery achieved by regulating surface-to-bulk oxygen activity Introducing strong metal–oxygen bonds to suppress the Jahn-Teller effect and enhance the structural stability of Ni/Co-free Mn-based layered oxide cathodes for potassium-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1