Hui Liu , Fang Wang , Huanhuan Gao , Yukun Chen , Xueqin Liao , Jianzhong Liu
{"title":"Comparative study on the characteristics of energy release, decomposition, and combustion between NEPE propellants and HTPB propellants","authors":"Hui Liu , Fang Wang , Huanhuan Gao , Yukun Chen , Xueqin Liao , Jianzhong Liu","doi":"10.1016/j.combustflame.2024.113827","DOIUrl":null,"url":null,"abstract":"<div><div>Energy performance is always the primary focus of solid propulsion technology development. This paper investigated the characteristics of the energy release, decomposition, and combustion of two typical propellants (NEPE propellants and HTPB propellants) using NASA-CEA calculations, thermal analysis, and an electric wire ignition combustion system. The decomposition temperature of NG, BTTN, GAP, and CL-20 in NEPE propellants were low. The decomposition products were abundant and the decomposition exotherm was large. It had a strong inhibitory effect on LTD of AP and a strong promotional effect on HTD of AP, resulting in the combination of HTD and LTD of AP into a single peak. The flame brightness of two propellants was obviously improved with pressure increasing, as was the flame expansion area, burning rate, and combustion intensity. The ignition delay time <em>t</em><sub>i</sub> decreased and the burning rate <em>r</em> increased. Compared to HTPB propellants, NEPE propellants had brighter flames, larger flame expansion area, more intense combustion, smaller <em>t</em><sub>i,</sub> and smaller <em>r</em> under the same pressure. The pressure exponent n of NEPE propellants (0.43) was larger than that of HTPB propellants (0.39). The rate of the chemical reactions and the rate of diffusion and mixing had a greater impact on the burning rate of NEPE propellants.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"271 ","pages":"Article 113827"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218024005364","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Energy performance is always the primary focus of solid propulsion technology development. This paper investigated the characteristics of the energy release, decomposition, and combustion of two typical propellants (NEPE propellants and HTPB propellants) using NASA-CEA calculations, thermal analysis, and an electric wire ignition combustion system. The decomposition temperature of NG, BTTN, GAP, and CL-20 in NEPE propellants were low. The decomposition products were abundant and the decomposition exotherm was large. It had a strong inhibitory effect on LTD of AP and a strong promotional effect on HTD of AP, resulting in the combination of HTD and LTD of AP into a single peak. The flame brightness of two propellants was obviously improved with pressure increasing, as was the flame expansion area, burning rate, and combustion intensity. The ignition delay time ti decreased and the burning rate r increased. Compared to HTPB propellants, NEPE propellants had brighter flames, larger flame expansion area, more intense combustion, smaller ti, and smaller r under the same pressure. The pressure exponent n of NEPE propellants (0.43) was larger than that of HTPB propellants (0.39). The rate of the chemical reactions and the rate of diffusion and mixing had a greater impact on the burning rate of NEPE propellants.
期刊介绍:
The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on:
Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including:
Conventional, alternative and surrogate fuels;
Pollutants;
Particulate and aerosol formation and abatement;
Heterogeneous processes.
Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including:
Premixed and non-premixed flames;
Ignition and extinction phenomena;
Flame propagation;
Flame structure;
Instabilities and swirl;
Flame spread;
Multi-phase reactants.
Advances in diagnostic and computational methods in combustion, including:
Measurement and simulation of scalar and vector properties;
Novel techniques;
State-of-the art applications.
Fundamental investigations of combustion technologies and systems, including:
Internal combustion engines;
Gas turbines;
Small- and large-scale stationary combustion and power generation;
Catalytic combustion;
Combustion synthesis;
Combustion under extreme conditions;
New concepts.