{"title":"Effect of electrical current on sliding friction and wear mechanisms in a-C and ta-C amorphous Carbon coatings","authors":"Amir M.K. Behtash, A.T. Alpas","doi":"10.1016/j.wear.2024.205608","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the sliding wear behaviour of amorphous carbon (a-C) and tetrahedral amorphous carbon (ta-C) coatings, two forms of diamond-like carbon (DLC) coatings, against SAE 52100 steel using a modified ball-on-disk tribometer with applied electrical currents ranging from 100 mA to 1800 mA. It focused on the variations in sliding friction and wear characteristics of these coatings as electrical currents increased under constant load and speed conditions. The a-C coatings exhibited lower coefficient of friction (COF) values and reduced volumetric wear losses up to 1500 mA, while ta-C coatings studied displayed higher wear, similar to uncoated M2 steel, at 300 mA with degradation occurring at low currents, resulting in failure due to severe oxidational wear. The a-C coatings showed no significant electrical damage at these currents. Raman spectroscopy revealed structural changes on the wear tracks of sp<sup>2</sup>-rich a-C coatings, specifically the formation of graphene layers. In comparison, the wear tracks of sp<sup>3</sup>-rich ta-C coatings did not display such transformation under the conditions studied. The graphene coverage on the surfaces of the a-C coatings increased with the increase in the current as revealed by the Raman intensity maps of 2D peaks and this increase was accompanied by a higher defect density in the graphene. The low COF of graphene-covered a-C surfaces was consistent with the proposed mechanisms of moisture adsorption. However, at currents exceeding 900 mA, surface temperatures of a-C coatings exceeded 100 °C, impairing graphene's ability to maintain low friction, resulting in an increased COF.</div></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"560 ","pages":"Article 205608"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wear","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043164824003739","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the sliding wear behaviour of amorphous carbon (a-C) and tetrahedral amorphous carbon (ta-C) coatings, two forms of diamond-like carbon (DLC) coatings, against SAE 52100 steel using a modified ball-on-disk tribometer with applied electrical currents ranging from 100 mA to 1800 mA. It focused on the variations in sliding friction and wear characteristics of these coatings as electrical currents increased under constant load and speed conditions. The a-C coatings exhibited lower coefficient of friction (COF) values and reduced volumetric wear losses up to 1500 mA, while ta-C coatings studied displayed higher wear, similar to uncoated M2 steel, at 300 mA with degradation occurring at low currents, resulting in failure due to severe oxidational wear. The a-C coatings showed no significant electrical damage at these currents. Raman spectroscopy revealed structural changes on the wear tracks of sp2-rich a-C coatings, specifically the formation of graphene layers. In comparison, the wear tracks of sp3-rich ta-C coatings did not display such transformation under the conditions studied. The graphene coverage on the surfaces of the a-C coatings increased with the increase in the current as revealed by the Raman intensity maps of 2D peaks and this increase was accompanied by a higher defect density in the graphene. The low COF of graphene-covered a-C surfaces was consistent with the proposed mechanisms of moisture adsorption. However, at currents exceeding 900 mA, surface temperatures of a-C coatings exceeded 100 °C, impairing graphene's ability to maintain low friction, resulting in an increased COF.
期刊介绍:
Wear journal is dedicated to the advancement of basic and applied knowledge concerning the nature of wear of materials. Broadly, topics of interest range from development of fundamental understanding of the mechanisms of wear to innovative solutions to practical engineering problems. Authors of experimental studies are expected to comment on the repeatability of the data, and whenever possible, conduct multiple measurements under similar testing conditions. Further, Wear embraces the highest standards of professional ethics, and the detection of matching content, either in written or graphical form, from other publications by the current authors or by others, may result in rejection.