{"title":"Microscopic scale analysis of the dynamic changes of the melt pool and the evolution of dendritic structure during L-DED of GH3536 alloy","authors":"Kaikai Xu , Yadong Gong , Jibin Zhao , Qiang Zhao","doi":"10.1016/j.vacuum.2024.113790","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents the establishment of a melt pool flow model, wherein the solute field and phase field are concurrently integrated to simulate the dynamic transformations within the melt pool and the evolution of dendrites during the solidification process. Experimental validation affirms the model's precision. The simulation outcomes indicate the persistence of a pronounced symmetry within the melt pool throughout the flow process. Intriguingly, perturbations in the powder and variations in heat transfer give rise to a vortex-like internal flow pattern within the melt pool. These findings align harmoniously with the experimental results concerning the dimensions of the melt pool (melt width, melt depth, and melt height). Specifically, the growth rate of dendrite tips and the dendrite count exhibit significant sensitivity to alterations in temperature gradient. As the temperature gradient escalates, the primary dendrite arm spacing diminishes, accompanied by heightened development of secondary dendrite arms. In congruence with the simulated dendrite evolution process, the microstructure within the deposited layer derived from experimental observations primarily comprises columnar crystals. The growth of dendrites unfolds perpendicularly to the melt pool boundary, following the trajectory of decreasing temperature gradient, thereby mirroring the simulated dendrite evolution process.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"231 ","pages":"Article 113790"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X24008364","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the establishment of a melt pool flow model, wherein the solute field and phase field are concurrently integrated to simulate the dynamic transformations within the melt pool and the evolution of dendrites during the solidification process. Experimental validation affirms the model's precision. The simulation outcomes indicate the persistence of a pronounced symmetry within the melt pool throughout the flow process. Intriguingly, perturbations in the powder and variations in heat transfer give rise to a vortex-like internal flow pattern within the melt pool. These findings align harmoniously with the experimental results concerning the dimensions of the melt pool (melt width, melt depth, and melt height). Specifically, the growth rate of dendrite tips and the dendrite count exhibit significant sensitivity to alterations in temperature gradient. As the temperature gradient escalates, the primary dendrite arm spacing diminishes, accompanied by heightened development of secondary dendrite arms. In congruence with the simulated dendrite evolution process, the microstructure within the deposited layer derived from experimental observations primarily comprises columnar crystals. The growth of dendrites unfolds perpendicularly to the melt pool boundary, following the trajectory of decreasing temperature gradient, thereby mirroring the simulated dendrite evolution process.
期刊介绍:
Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences.
A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below.
The scope of the journal includes:
1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes).
2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis.
3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification.
4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.