{"title":"Experimental analysis and optimal control of temperature with adaptive control objective for fuel cells","authors":"Pei Peng, Zhendong Sun, Yujie Wang, Zonghai Chen","doi":"10.1016/j.etran.2024.100373","DOIUrl":null,"url":null,"abstract":"<div><div>Proton exchange membrane fuel cells (PEMFCs) vehicles are regarded as the most promising green transportation option, but their widespread adoption is hindered by cost and longevity, and temperature of PEMFCs stack is a crucial factor affecting both efficiency and longevity. Current researches on temperature control mainly focus on the iterative updates of control methods and performance optimization, while there is relatively little research on the detailed analysis of control objectives. Therefore this paper developed an active optimal control strategy for stack temperature with adaptive control objective to enhance the output performance of PEMFCs in hybrid systems. To this end, firstly, a quantitative mapping relationship between operating temperature and current was established through experimental calibration, identifying the optimal temperature path for maximizing output voltage at different current levels. Secondly, a control-oriented voltage model was developed to describe the phenomenon observed experimentally, where the output voltage initially increased and then decreased with the monotonically increasing stack temperature, provided that other parameters remain constant. Finally, an active optimal control strategy is proposed, which actively adjusts the temperature control objective in real-time according to the prevailing operating current and the predetermined optimal temperature path. The comparative validations under both static and dynamic conditions, utilizing three different control methods, demonstrated that the proposed active optimal control strategy clearly outperforms normal control strategy. The maximum performance enhancements achieved were 1.15%, 1.21%, and 1.30%, respectively.</div></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"22 ","pages":"Article 100373"},"PeriodicalIF":15.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116824000638","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Proton exchange membrane fuel cells (PEMFCs) vehicles are regarded as the most promising green transportation option, but their widespread adoption is hindered by cost and longevity, and temperature of PEMFCs stack is a crucial factor affecting both efficiency and longevity. Current researches on temperature control mainly focus on the iterative updates of control methods and performance optimization, while there is relatively little research on the detailed analysis of control objectives. Therefore this paper developed an active optimal control strategy for stack temperature with adaptive control objective to enhance the output performance of PEMFCs in hybrid systems. To this end, firstly, a quantitative mapping relationship between operating temperature and current was established through experimental calibration, identifying the optimal temperature path for maximizing output voltage at different current levels. Secondly, a control-oriented voltage model was developed to describe the phenomenon observed experimentally, where the output voltage initially increased and then decreased with the monotonically increasing stack temperature, provided that other parameters remain constant. Finally, an active optimal control strategy is proposed, which actively adjusts the temperature control objective in real-time according to the prevailing operating current and the predetermined optimal temperature path. The comparative validations under both static and dynamic conditions, utilizing three different control methods, demonstrated that the proposed active optimal control strategy clearly outperforms normal control strategy. The maximum performance enhancements achieved were 1.15%, 1.21%, and 1.30%, respectively.
期刊介绍:
eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation.
The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment.
Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.