Effects of thermophysical properties on heterogeneous reaction dynamics of methane/oxygen mixtures in a micro catalytic combustion chamber

IF 5.6 2区 工程技术 Q2 ENERGY & FUELS Journal of The Energy Institute Pub Date : 2024-10-29 DOI:10.1016/j.joei.2024.101871
Muhammad Nauman , Jianfeng Pan , Qingbo Lu , Yi Zhang , Evans K. Quaye , Feiyang Li , Wenming Yang
{"title":"Effects of thermophysical properties on heterogeneous reaction dynamics of methane/oxygen mixtures in a micro catalytic combustion chamber","authors":"Muhammad Nauman ,&nbsp;Jianfeng Pan ,&nbsp;Qingbo Lu ,&nbsp;Yi Zhang ,&nbsp;Evans K. Quaye ,&nbsp;Feiyang Li ,&nbsp;Wenming Yang","doi":"10.1016/j.joei.2024.101871","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a numerical investigation of premixed methane/oxygen heterogeneous reaction characteristics in a micro-catalytic combustion chamber under various boundary and wall thermophysical conditions. A 3-D model was simulated using ANSYS Fluent and validated against experimental data, with a maximum difference of only 1.92 % using a pure heterogeneous reaction. This study aims to analyze the wall boundary conditions and thermophysical factors that influence chemically and thermally during heterogeneous reactions. The results show that, with an increase in inlet velocity from 1 m/s to 10 m/s, the maximum heat produced by the reaction increases 52.67 % and the temperature of the channel as well as the outer wall increases accordingly. Using a 2.5 m/s inlet velocity, we found that the maximum external wall temperature uniformity coefficient was 0.1911. Furthermore, it was observed that as the heterogeneous reaction progresses, Platinum's surface coverage and the H<sub>(s)</sub> site coverage increase; however, the O<sub>(s)</sub>, OH<sub>(s)</sub>, CO<sub>(s)</sub>, and C<sub>(s)</sub> site coverage decreases. Additionally, low convective heat transfer and wall thermal conductivity increase the efficiency of heterogeneous reactions and methane conversion. As a result of the low wall thermal conductivity, the outer wall temperature uniformity coefficient was 0.2863, while the methane conversion rate was 79.05 %. According to the results, higher thermal resistance increased the methane conversion rate from 68.18 % to 79.05 %, and the combustion process within the micro-catalytic combustor was uniform and controlled, thus enhancing its efficiency. The results of this study provide useful insights for optimizing micro-combustors, paving the way for future improvements in their design and operational efficiency.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101871"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124003490","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a numerical investigation of premixed methane/oxygen heterogeneous reaction characteristics in a micro-catalytic combustion chamber under various boundary and wall thermophysical conditions. A 3-D model was simulated using ANSYS Fluent and validated against experimental data, with a maximum difference of only 1.92 % using a pure heterogeneous reaction. This study aims to analyze the wall boundary conditions and thermophysical factors that influence chemically and thermally during heterogeneous reactions. The results show that, with an increase in inlet velocity from 1 m/s to 10 m/s, the maximum heat produced by the reaction increases 52.67 % and the temperature of the channel as well as the outer wall increases accordingly. Using a 2.5 m/s inlet velocity, we found that the maximum external wall temperature uniformity coefficient was 0.1911. Furthermore, it was observed that as the heterogeneous reaction progresses, Platinum's surface coverage and the H(s) site coverage increase; however, the O(s), OH(s), CO(s), and C(s) site coverage decreases. Additionally, low convective heat transfer and wall thermal conductivity increase the efficiency of heterogeneous reactions and methane conversion. As a result of the low wall thermal conductivity, the outer wall temperature uniformity coefficient was 0.2863, while the methane conversion rate was 79.05 %. According to the results, higher thermal resistance increased the methane conversion rate from 68.18 % to 79.05 %, and the combustion process within the micro-catalytic combustor was uniform and controlled, thus enhancing its efficiency. The results of this study provide useful insights for optimizing micro-combustors, paving the way for future improvements in their design and operational efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热物理性质对微型催化燃烧室中甲烷/氧气混合物异相反应动力学的影响
本文对各种边界和壁面热物理条件下微催化燃烧室中的预混合甲烷/氧气异相反应特性进行了数值研究。使用 ANSYS Fluent 对三维模型进行了模拟,并与实验数据进行了验证,在使用纯异相反应时,最大差异仅为 1.92%。本研究旨在分析异相反应过程中影响化学和热反应的壁边界条件和热物理因素。结果表明,随着入口速度从 1 米/秒增加到 10 米/秒,反应产生的最大热量增加了 52.67%,通道和外壁的温度也相应增加。在入口速度为 2.5 米/秒的情况下,我们发现最大外壁温度均匀系数为 0.1911。此外,我们还观察到,随着异相反应的进行,铂的表面覆盖率和 H(s)位点覆盖率增加,但 O(s)、OH(s)、CO(s)和 C(s)位点覆盖率下降。此外,低对流传热和壁面热传导率提高了异质反应和甲烷转化的效率。由于壁面导热系数低,外壁温度均匀系数为 0.2863,甲烷转化率为 79.05%。研究结果表明,较高的热阻可将甲烷转化率从 68.18% 提高到 79.05%,并且微催化燃烧器内的燃烧过程是均匀和可控的,从而提高了其效率。这项研究的结果为优化微型燃烧器提供了有益的启示,为今后改进微型燃烧器的设计和运行效率铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of The Energy Institute
Journal of The Energy Institute 工程技术-能源与燃料
CiteScore
10.60
自引率
5.30%
发文量
166
审稿时长
16 days
期刊介绍: The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include: Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies Emissions and environmental pollution control; safety and hazards; Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS; Petroleum engineering and fuel quality, including storage and transport Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems Energy storage The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.
期刊最新文献
Editorial Board Synergistic recovery of renewable hydrocarbon resources via co-pyrolysis of non-edible linseed and waste polypropylene: A study on influence of plastic on oil production and their utilization as a fuel for IC engine Comprehensive performance investigation of inexpensive oxygen carrier in chemical looping gasification of coal Cerium-induced modification of acid-base sites in Ni-zeolite catalysts for improved dry reforming of methane The impact of ignition and activation energy distribution on the combustion and emission characteristics of diesel-ammonia-natural gas engines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1