Leandro G. Aguiar , William M. Godoy , Nuno A.B.S. Graça , Alírio E. Rodrigues
{"title":"Resin-catalyzed reaction modeling integrating catalyst swelling and sites accessibility: Application to solketal synthesis","authors":"Leandro G. Aguiar , William M. Godoy , Nuno A.B.S. Graça , Alírio E. Rodrigues","doi":"10.1016/j.cherd.2024.10.016","DOIUrl":null,"url":null,"abstract":"<div><div>A novel mathematical model for resin-catalyzed reactions, incorporating dynamic variations in the resin's swelling index, internal mass transfer resistances, non-ideal liquid mixtures, and limited site accessibility, was developed. The Langmuir-Hinshelwood-Hougen-Watson (LHHW) mechanism, considering water adsorption, was used. Validation with experimental solketal synthesis data in ethanol (R² = 0.96) and solventless systems (R² = 0.99) was successful. A copolymerization model estimated the resin's swelling and accessibility features, using Karam and Tien’s algorithm to obtain linear swelling data correlated with glycerol conversion (R² = 0.9995). Incorporating these linear equations into the catalysis model indicated glycerol conversion could be up to four times higher than in unswollen systems due to increased porosity and decreased tortuosity. Gibbs free energies of 4.7 ± 0.9 kJ mol<sup>−1</sup> (solvent) and 12.1 ± 0.6 kJ mol<sup>−1</sup> (solventless) were found, with a reaction rate constant of 109 s<sup>−1</sup> at 313 K on the catalytic sites.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"212 ","pages":"Pages 58-70"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876224006014","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A novel mathematical model for resin-catalyzed reactions, incorporating dynamic variations in the resin's swelling index, internal mass transfer resistances, non-ideal liquid mixtures, and limited site accessibility, was developed. The Langmuir-Hinshelwood-Hougen-Watson (LHHW) mechanism, considering water adsorption, was used. Validation with experimental solketal synthesis data in ethanol (R² = 0.96) and solventless systems (R² = 0.99) was successful. A copolymerization model estimated the resin's swelling and accessibility features, using Karam and Tien’s algorithm to obtain linear swelling data correlated with glycerol conversion (R² = 0.9995). Incorporating these linear equations into the catalysis model indicated glycerol conversion could be up to four times higher than in unswollen systems due to increased porosity and decreased tortuosity. Gibbs free energies of 4.7 ± 0.9 kJ mol−1 (solvent) and 12.1 ± 0.6 kJ mol−1 (solventless) were found, with a reaction rate constant of 109 s−1 at 313 K on the catalytic sites.
期刊介绍:
ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering.
Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.