CO2-selective membrane reactor process for water-gas-shift reaction with CO2 capture in a coal-based IGCC power plant

IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Chemical Engineering Research & Design Pub Date : 2024-10-21 DOI:10.1016/j.cherd.2024.10.024
Oscar Ovalle-Encinia , Gregory B. Raupp , Jerry Y.S. Lin
{"title":"CO2-selective membrane reactor process for water-gas-shift reaction with CO2 capture in a coal-based IGCC power plant","authors":"Oscar Ovalle-Encinia ,&nbsp;Gregory B. Raupp ,&nbsp;Jerry Y.S. Lin","doi":"10.1016/j.cherd.2024.10.024","DOIUrl":null,"url":null,"abstract":"<div><div>Integrated gasification combined cycle (IGCC) power plants enable pre-combustion carbon capture to reduce CO<sub>2</sub> emissions. Membrane water-gas-shift (WGS) reactors can intensify these processes by converting raw syngas to H<sub>2</sub> with simultaneous CO<sub>2</sub> capture in one unit. This paper reports process design and techno-economic analysis (TEA) for a membrane reactor (MR) process with a CO<sub>2</sub> selective ceramic-carbonate dual-phase (CCDP) membrane for WGS reaction with CO<sub>2</sub> capture for a IGCC power plant. The target performance includes CO conversion &gt; 95 %, hydrogen purity &gt; 90 %, CO<sub>2</sub> purity &gt; 95 %, and carbon capture &gt; 90 %. Using a commercial catalyst and a CCDP membrane, the MR can achieve the performance target at 750 °C and space velocity of 250 h<sup>−1</sup>. The outcome of the process design and TEA shows that the CCDP MR has an operating cost of $24 M/year, significantly lower than that for the conventional processes (40 M$/year). However, the MR process has a higher capital cost ($1007 M) than the conventional process ($527 M) because of the higher cost of the CCDP MRs. Modeling analysis shows a MR with higher CO<sub>2</sub> permeance can deliver the target at a higher space velocity and lower membrane surface area to catalyst volume ratio, leading to a significantly reduced MR capital costs.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"212 ","pages":"Pages 71-80"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876224006099","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Integrated gasification combined cycle (IGCC) power plants enable pre-combustion carbon capture to reduce CO2 emissions. Membrane water-gas-shift (WGS) reactors can intensify these processes by converting raw syngas to H2 with simultaneous CO2 capture in one unit. This paper reports process design and techno-economic analysis (TEA) for a membrane reactor (MR) process with a CO2 selective ceramic-carbonate dual-phase (CCDP) membrane for WGS reaction with CO2 capture for a IGCC power plant. The target performance includes CO conversion > 95 %, hydrogen purity > 90 %, CO2 purity > 95 %, and carbon capture > 90 %. Using a commercial catalyst and a CCDP membrane, the MR can achieve the performance target at 750 °C and space velocity of 250 h−1. The outcome of the process design and TEA shows that the CCDP MR has an operating cost of $24 M/year, significantly lower than that for the conventional processes (40 M$/year). However, the MR process has a higher capital cost ($1007 M) than the conventional process ($527 M) because of the higher cost of the CCDP MRs. Modeling analysis shows a MR with higher CO2 permeance can deliver the target at a higher space velocity and lower membrane surface area to catalyst volume ratio, leading to a significantly reduced MR capital costs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于煤基 IGCC 发电厂二氧化碳捕集的水煤气变换反应的二氧化碳选择性膜反应器工艺
整体煤气化联合循环 (IGCC) 发电厂可通过燃烧前的碳捕集减少二氧化碳排放。膜水气变换(WGS)反应器可在一个装置中将原料合成气转化为 H2 并同时进行二氧化碳捕集,从而强化这些工艺。本文报告了膜反应器(MR)工艺的设计和技术经济分析(TEA),该工艺采用二氧化碳选择性陶瓷-碳酸盐双相(CCDP)膜,用于 IGCC 发电厂的 WGS 反应和二氧化碳捕集。目标性能包括 CO 转化率 95%、氢纯度 90%、CO2 纯度 95%、碳捕集率 90%。使用商用催化剂和 CCDP 膜,MR 可在 750 °C 和 250 h-1 的空间速度下实现性能目标。工艺设计和 TEA 的结果表明,CCDP MR 的运行成本为 2,400 万美元/年,大大低于传统工艺(4,000 万美元/年)。然而,由于 CCDP MR 的成本较高,因此 MR 工艺的资本成本(1.07 亿美元)高于传统工艺(5.27 亿美元)。模型分析表明,具有较高二氧化碳渗透率的 MR 可以以较高的空间速度和较低的膜表面积与催化剂体积比输送目标气体,从而显著降低 MR 的资本成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Engineering Research & Design
Chemical Engineering Research & Design 工程技术-工程:化工
CiteScore
6.10
自引率
7.70%
发文量
623
审稿时长
42 days
期刊介绍: ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering. Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.
期刊最新文献
Corrigendum to “Enhanced DeNOx catalysis: Induction-heating-catalysis-ready 3D stable Ni supported metal combinations” [Chem. Eng. Res. Des. 207 (2024) 404–419] Cu-Ni synergy in physicochemical properties of the Mg-Al oxides matrix to selective glycerol carbonate production Design of China first pilot plant for supercritical hydrothermal synthesis of AgNPs A high performance of thin film composite based on dextran substrate for effective removal of heavy metal ions Accelerating catalytic experimentation of water gas shift reaction using machine learning models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1